The Isomorphism Problem for Generalized Baumslag–Solitar Groups with One Mobile Edge

被引:0
作者
F. A. Dudkin
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Algebra and Logic | 2017年 / 56卷
关键词
isomorphism problem; generalized Baumslag–Solitar group; labeled graph;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized Baumslag–Solitar group (GBS group) is a finitely generated group G which acts on a tree with all edge and vertex stabilizers infinite cyclic. Every GBS group is the fundamental group π1(𝔸) of some labeled graph 𝔸. This paper deals with the isomorphism problem for GBS groups, which is the problem of determining whether π1(𝔸) ≅ π1(𝔹) for two given labeled graphs 𝔸 and 𝔹. We describe an algorithm that decides this problem for the case where one of the labeled graphs has a sole mobile edge.
引用
收藏
页码:197 / 209
页数:12
相关论文
共 10 条
[1]  
Forester M(2006)Splittings of generalized Baumslag–Solitar groups Geom. Dedicata 121 43-59
[2]  
Baumslag G(1962)Some two-generator one-relator non-Hopfian groups Bull. Am. Math. Soc. 68 199-201
[3]  
Solitar D(2008)On the isomorphism problem for generalized Baumslag–Solitar groups Alg. Geom. Topol. 8 2289-2322
[4]  
Clay M(2007)On the automorphism group of generalized Baumslag–Solitar groups Geom. Topol. 11 473-515
[5]  
Forester M(2002)Deformation and rigidity of simplicial group actions on trees Geom. Topol. 6 219-267
[6]  
Levitt G(2009)Whitehead moves for Bull. London Math. Soc. 41 205-212
[7]  
Forester M(2015)-trees Sib. El. Math. Rep. 12 552-561
[8]  
Clay M(undefined)Admissible slides for generalized Baumslag–Solitar groups undefined undefined undefined-undefined
[9]  
Forester M(undefined)undefined undefined undefined undefined-undefined
[10]  
Dudkin FA(undefined)undefined undefined undefined undefined-undefined