The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems

被引:0
作者
Zhengyong Zhou
Yunchan Peng
机构
[1] Shanxi Normal University,School of Mathematics and Computer Sciences
来源
Journal of Global Optimization | 2019年 / 74卷
关键词
Mixed complementarity problems; Smoothing projection functions; Semismooth; Smoothing Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
According to the structure of the projection function onto the box set ΠX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _X$$\end{document} and the Chen–Harker–Kanzow–Smale (CHKS) smoothing function, a new class of smoothing projection functions onto the box set are proposed in this paper. The new smoothing projection functions only smooth ΠX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _X$$\end{document} in neighborhoods of nonsmooth points of ΠX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _X$$\end{document}, and keep unchanged with ΠX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _X$$\end{document} at other points, hence they are referred as the locally Chen–Harker–Kanzow–Smale (LCHKS) smoothing functions. Based on the Robinson’s normal equation and the LCHKS smoothing functions, a smoothing Newton method with its convergence results is proposed for solving mixed complementarity problems. Compared with smoothing Newton methods based on various smoothing projection functions, the computations of the LCHKS smoothing function, the function value and its Jacobian matrix of the Newton equation become cheaper, and the Newton direction can be found by solving a low dimensional linear equation, hence the smoothing Newton method based on the LCHKS smoothing functions shows more efficient for large-scale mixed complementarity problems. The LCHKS smoothing functions are proved to be feasible, continuously differentiable, uniform approximations of ΠX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi _X$$\end{document}, globally Lipschitz continuous and strongly semismooth, which are important to establish the superlinear and quadratic convergence of the smoothing Newton method. The proposed smoothing Newton method is implemented in MATLAB and numerical tests are done on the MCPLIB test collection. Numerical results show that the smoothing Newton method based on the LCHKS smoothing functions is promising for mixed complementarity problems.
引用
收藏
页码:169 / 193
页数:24
相关论文
共 40 条
[1]  
Billups SC(1997)A comparison of algorithms for large-scale mixed complementarity problems Comput. Optim. Appl. 7 3-25
[2]  
Dirkse SP(1997)Smooth approximations to nonlinear complementarity problems SIAM J. Optim. 7 403-420
[3]  
Ferris MC(1999)Continuation methods for nonlinear complementarity problems via normal maps Eur. J. Oper. Res. 116 591-606
[4]  
Chen BT(1995)Smoothing methods for convex inequalities and linear complementarity problems Math. Program. 71 51-69
[5]  
Harker PT(1996)A class of smoothing functions for nonlinear and mixed complementarity problems Comput. Optim. Appl. 5 97-138
[6]  
Chen BT(1998)Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities Math. Comput. 67 519-540
[7]  
Harker PT(1996)A semismooth equation approach to the solution of nonlinear complementarity problems Math. Program. 75 407-439
[8]  
Pınar MÇ(1995)MCPLIB: a collection of nonlinear mixed complementarity problem Optim. Methods Softw. 5 319-345
[9]  
Chen CH(1971)On the basic theorem of complementarity Math. Program. 1 68-75
[10]  
Mangasarian OL(1997)A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems Math. Program. 76 493-512