Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain

被引:0
作者
Yuanfei Li
Shuanghu Zhang
Changhao Lin
机构
[1] Huashang College Guangdong University of Finance & Economics,Department of Applied Mathematics
[2] Guangdong University of Finance,School of Mathematical Sciences
[3] South China Normal University,undefined
来源
Boundary Value Problems | / 2021卷
关键词
Boussinesq equations; Continuous dependence; Boussinesq coefficient; Interfacing problem; A priori bounds; 35B40; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
A priori bounds were derived for the flow in a bounded domain for the viscous-porous interfacing fluids. We assumed that the viscous fluid was slow in Ω1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega _{1}$\end{document}, which was governed by the Boussinesq equations. For a porous medium in Ω2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega _{2}$\end{document}, we supposed that the flow satisfied the Darcy equations. With the aid of these a priori bounds we were able to demonstrate the result of the continuous dependence type for the Boussinesq coefficient λ. Following the method of a first-order differential inequality, we can further obtain the result that the solution depends continuously on the interface boundary coefficient α. These results showed that the structural stability is valid for the interfacing problem.
引用
收藏
相关论文
共 50 条
[41]   STRUCTURAL STABILITY FOR BRINKMAN-FORCHHEIMER EQUATIONS [J].
Liu, Yan ;
Lin, Changhao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
[42]   The Improved Abstract Boussinesq Equations and Application [J].
Veli B. Shakhmurov ;
Rishad Shahmurov .
Mediterranean Journal of Mathematics, 2021, 18
[43]   Some Remarks on Planar Boussinesq Equations [J].
Xiao-jing CAI 1 .
Acta Mathematicae Applicatae Sinica, 2012, (03) :525-534
[44]   Some remarks on planar Boussinesq equations [J].
Xiao-jing Cai ;
Chun-yan Xue ;
Xian-jin Li ;
Ying Liu ;
Quan-sen Jiu .
Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 :525-534
[45]   Exact solutions of extended Boussinesq equations [J].
Hamdi, S ;
Enright, WH ;
Ouellet, Y ;
Schiesser, WE .
NUMERICAL ALGORITHMS, 2004, 37 (1-4) :165-175
[46]   Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation [J].
Xueke Pu ;
Wenli Zhou .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
[47]   BOUNDARY FEEDBACK STABILIZATION OF BOUSSINESQ EQUATIONS [J].
刘汉兵 ;
肖海军 .
Acta Mathematica Scientia, 2018, (06) :1881-1902
[48]   STRONG SOLUTIONS FOR BOUSSINESQ EQUATIONS WITH POTENTIALS [J].
Lefter, Adriana-Ioana .
ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2009, 55 (02) :295-328
[49]   Some remarks on planar Boussinesq equations [J].
Cai, Xiao-jing ;
Xue, Chun-yan ;
Li, Xian-jin ;
Liu, Ying ;
Jiu, Quan-sen .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (03) :525-534
[50]   Exact Solutions of Extended Boussinesq Equations [J].
S. Hamdi ;
W.H. Enright ;
Y. Ouellet ;
W.E. Schiesser .
Numerical Algorithms, 2004, 37 :165-175