Contractions Satisfying the Absolute Value Property \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |A|^2 \leq |A^2| $$\end{document}

被引:0
作者
B.P. Duggal
I.H. Jeon
C.S. Kubrusly
机构
[1] United Arab Emirates University,Department of Mathematics
[2] Ewha Women’s University,Department of Mathematics
[3] Catholic University of Rio de Janeiro,undefined
关键词
Primary: 47B20; 47B47; Secondary: 47A15; 47A63; Operators satisfying ; contraction; invariant subspace; commutativity theorem; derivation range;
D O I
10.1007/s00020-002-1202-z
中图分类号
学科分类号
摘要
Let B(H) denote the algebra of operators on a complex Hilbert space H, and let U denote the class of operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \in B(H) $$\end{document} which satisfy the absolute value condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |A|^2 \leq |A^2| $$\end{document}. It is proved that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \in \mathcal{U} $$\end{document} is a contraction, then either A has a nontrivial invariant subspace or A is a proper contraction and the nonnegative operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D = |A^2| - |A|^2 $$\end{document} is strongly stable. A Putnam-Fuglede type commutativity theorem is proved for contractions A in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{U} $$\end{document}, and it is shown that if normal subspaces of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |A|^2 \leq |A^2| $$\end{document}. It is proved that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \in \mathcal{U} $$\end{document} are reducing, then every compact operator in the intersection of the weak closure of the range of the derivation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \delta_{A}(X) = AX - XA $$\end{document} with the commutant of A* is quasinilpotent.
引用
收藏
页码:141 / 148
页数:7
相关论文
empty
未找到相关数据