Fractional Dynamics and Recurrence Analysis in Cancer Model

被引:0
作者
Enrique C. Gabrick
Matheus R. Sales
Elaheh Sayari
José Trobia
Ervin K. Lenzi
Fernando S. Borges
José D. Szezech Jr.
Kelly C. Iarosz
Ricardo L. Viana
Iberê L. Caldas
Antonio M. Batista
机构
[1] State University of Ponta Grossa,Graduate Program in Science
[2] State University of Ponta Grossa,Department of Mathematics and Statistics
[3] State University of Ponta Grossa,Department of Physics
[4] State University of New York Downstate Health Sciences University,Department of Physiology and Pharmacology
[5] University Center UNIFATEB,Institute of Physics
[6] University of São Paulo,Department of Physics
[7] Federal University of Paraná,undefined
来源
Brazilian Journal of Physics | 2023年 / 53卷
关键词
Cancer model; Fractional calculus; Recurrence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying the dynamics of a standard model, i.e., with integer derivatives. We study the dynamical behavior by means of the bifurcation diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurrence rate (RR), the determinism (DET), and the recurrence time entropy (RTE). We find a high correlation coefficient between the Lyapunov exponents and RTE. Our simulations suggest that the tumor growth parameter (ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}) is associated with a chaotic regime. Our results suggest a high correlation between the largest Lyapunov exponents and RTE. After understanding the dynamics of the model in the standard formulation, we extend our results by considering fractional operators. We fix the parameters in the chaotic regime and investigate the effects of the fractional order. We demonstrate how fractional dynamics can be properly characterized using RQA measures, which offer the advantage of not requiring knowledge of the fractional Jacobian matrix. We find that the chaotic motion is suppressed as α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} decreases, and the system becomes periodic for α⪅0.9966\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \lessapprox 0.9966$$\end{document}. We observe limit cycles for α∈(0.9966,0.899)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0.9966,0.899)$$\end{document} and fixed points for α<0.899\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0.899$$\end{document}. The fixed point is determined analytically for the considered parameters. Finally, we discover that these dynamics are separated by an exponential relationship between α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}. Also, the transition depends on a supper transient which obeys the same relationship.
引用
收藏
相关论文
共 50 条
  • [21] A Fractional Model of Labyrinth Chaos and Numerical Analysis
    Xin, Bao-Gui
    Ma, Jun-Hai
    Chen, Tong
    Liu, Yan-Qin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (10) : 837 - 842
  • [22] Dynamics analysis of fractional-order Hopfield neural networks
    Batiha, Iqbal M.
    Albadarneh, Ramzi B.
    Momani, Shaher
    Jebril, Iqbal H.
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (08)
  • [23] A mathematical model of corruption dynamics endowed with fractal-fractional derivative
    Nwajeri, Ugochukwu Kizito
    Asamoah, Joshua Kiddy K.
    Ugochukwu, Ndubuisi Rich
    Omame, Andrew
    Jin, Zhen
    RESULTS IN PHYSICS, 2023, 52
  • [24] Fractional order epidemic model for the dynamics of novel COVID-19
    Baba, Isa Abdullahi
    Nasidi, Bashir Ahmad
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 537 - 548
  • [25] Complex and Fractional Dynamics
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    ENTROPY, 2017, 19 (02):
  • [26] General Fractional Dynamics
    Tarasov, Vasily E.
    MATHEMATICS, 2021, 9 (13)
  • [27] Symbolic Fractional Dynamics
    Tenreiro Machado, J. A.
    Galhano, Alexandra M.
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) : 468 - 474
  • [28] Fractional dynamics in DNA
    Tenreiro Machado, J. A.
    Costa, Antonio C.
    Quelhas, Maria Dulce
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (08) : 2963 - 2969
  • [29] Global stability analysis of a fractional SVEIR epidemic model
    Nabti, Abderrazak
    Ghanbari, Behzad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8577 - 8597
  • [30] Analysis of a fractional epidemic model by fractional generalised homotopy analysis method using modified Riemann - Liouville derivative
    Saratha, S. R.
    Krishnan, G. Sai Sundara
    Bagyalakshmi, M.
    APPLIED MATHEMATICAL MODELLING, 2021, 92 : 525 - 545