Fractional Dynamics and Recurrence Analysis in Cancer Model

被引:0
作者
Enrique C. Gabrick
Matheus R. Sales
Elaheh Sayari
José Trobia
Ervin K. Lenzi
Fernando S. Borges
José D. Szezech Jr.
Kelly C. Iarosz
Ricardo L. Viana
Iberê L. Caldas
Antonio M. Batista
机构
[1] State University of Ponta Grossa,Graduate Program in Science
[2] State University of Ponta Grossa,Department of Mathematics and Statistics
[3] State University of Ponta Grossa,Department of Physics
[4] State University of New York Downstate Health Sciences University,Department of Physiology and Pharmacology
[5] University Center UNIFATEB,Institute of Physics
[6] University of São Paulo,Department of Physics
[7] Federal University of Paraná,undefined
来源
Brazilian Journal of Physics | 2023年 / 53卷
关键词
Cancer model; Fractional calculus; Recurrence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying the dynamics of a standard model, i.e., with integer derivatives. We study the dynamical behavior by means of the bifurcation diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurrence rate (RR), the determinism (DET), and the recurrence time entropy (RTE). We find a high correlation coefficient between the Lyapunov exponents and RTE. Our simulations suggest that the tumor growth parameter (ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}) is associated with a chaotic regime. Our results suggest a high correlation between the largest Lyapunov exponents and RTE. After understanding the dynamics of the model in the standard formulation, we extend our results by considering fractional operators. We fix the parameters in the chaotic regime and investigate the effects of the fractional order. We demonstrate how fractional dynamics can be properly characterized using RQA measures, which offer the advantage of not requiring knowledge of the fractional Jacobian matrix. We find that the chaotic motion is suppressed as α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} decreases, and the system becomes periodic for α⪅0.9966\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \lessapprox 0.9966$$\end{document}. We observe limit cycles for α∈(0.9966,0.899)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0.9966,0.899)$$\end{document} and fixed points for α<0.899\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0.899$$\end{document}. The fixed point is determined analytically for the considered parameters. Finally, we discover that these dynamics are separated by an exponential relationship between α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}. Also, the transition depends on a supper transient which obeys the same relationship.
引用
收藏
相关论文
共 50 条
[21]   A Fractional Model of Labyrinth Chaos and Numerical Analysis [J].
Xin, Bao-Gui ;
Ma, Jun-Hai ;
Chen, Tong ;
Liu, Yan-Qin .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (10) :837-842
[22]   Competing dynamics : Analysis of different orders fractional epidemic niv ty ag d B hdad model [J].
Joudha, Zainab Mohammed ;
Al-Azzawi, Saad N. Ali .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2025, 28 (3A) :813-822
[23]   Dynamics analysis of fractional-order Hopfield neural networks [J].
Batiha, Iqbal M. ;
Albadarneh, Ramzi B. ;
Momani, Shaher ;
Jebril, Iqbal H. .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (08)
[24]   Fractional order epidemic model for the dynamics of novel COVID-19 [J].
Baba, Isa Abdullahi ;
Nasidi, Bashir Ahmad .
ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) :537-548
[25]   A mathematical model of corruption dynamics endowed with fractal-fractional derivative [J].
Nwajeri, Ugochukwu Kizito ;
Asamoah, Joshua Kiddy K. ;
Ugochukwu, Ndubuisi Rich ;
Omame, Andrew ;
Jin, Zhen .
RESULTS IN PHYSICS, 2023, 52
[26]   General Fractional Dynamics [J].
Tarasov, Vasily E. .
MATHEMATICS, 2021, 9 (13)
[27]   Complex and Fractional Dynamics [J].
Tenreiro Machado, J. A. ;
Lopes, Antonio M. .
ENTROPY, 2017, 19 (02)
[28]   Symbolic Fractional Dynamics [J].
Tenreiro Machado, J. A. ;
Galhano, Alexandra M. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (03) :468-474
[29]   Fractional dynamics in DNA [J].
Tenreiro Machado, J. A. ;
Costa, Antonio C. ;
Quelhas, Maria Dulce .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (08) :2963-2969
[30]   Global stability analysis of a fractional SVEIR epidemic model [J].
Nabti, Abderrazak ;
Ghanbari, Behzad .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) :8577-8597