Fractional Dynamics and Recurrence Analysis in Cancer Model

被引:0
作者
Enrique C. Gabrick
Matheus R. Sales
Elaheh Sayari
José Trobia
Ervin K. Lenzi
Fernando S. Borges
José D. Szezech Jr.
Kelly C. Iarosz
Ricardo L. Viana
Iberê L. Caldas
Antonio M. Batista
机构
[1] State University of Ponta Grossa,Graduate Program in Science
[2] State University of Ponta Grossa,Department of Mathematics and Statistics
[3] State University of Ponta Grossa,Department of Physics
[4] State University of New York Downstate Health Sciences University,Department of Physiology and Pharmacology
[5] University Center UNIFATEB,Institute of Physics
[6] University of São Paulo,Department of Physics
[7] Federal University of Paraná,undefined
来源
Brazilian Journal of Physics | 2023年 / 53卷
关键词
Cancer model; Fractional calculus; Recurrence analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we analyze the effects of fractional derivatives in the chaotic dynamics of a cancer model. We begin by studying the dynamics of a standard model, i.e., with integer derivatives. We study the dynamical behavior by means of the bifurcation diagram, Lyapunov exponents, and recurrence quantification analysis (RQA), such as the recurrence rate (RR), the determinism (DET), and the recurrence time entropy (RTE). We find a high correlation coefficient between the Lyapunov exponents and RTE. Our simulations suggest that the tumor growth parameter (ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}) is associated with a chaotic regime. Our results suggest a high correlation between the largest Lyapunov exponents and RTE. After understanding the dynamics of the model in the standard formulation, we extend our results by considering fractional operators. We fix the parameters in the chaotic regime and investigate the effects of the fractional order. We demonstrate how fractional dynamics can be properly characterized using RQA measures, which offer the advantage of not requiring knowledge of the fractional Jacobian matrix. We find that the chaotic motion is suppressed as α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} decreases, and the system becomes periodic for α⪅0.9966\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \lessapprox 0.9966$$\end{document}. We observe limit cycles for α∈(0.9966,0.899)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0.9966,0.899)$$\end{document} and fixed points for α<0.899\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0.899$$\end{document}. The fixed point is determined analytically for the considered parameters. Finally, we discover that these dynamics are separated by an exponential relationship between α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and ρ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _1$$\end{document}. Also, the transition depends on a supper transient which obeys the same relationship.
引用
收藏
相关论文
共 50 条
  • [1] Fractional Dynamics and Recurrence Analysis in Cancer Model
    Gabrick, Enrique C.
    Sales, Matheus R.
    Sayari, Elaheh
    Trobia, Jose
    Lenzi, Ervin K.
    Borges, Fernando S.
    Szezech Jr., Jose D.
    Iarosz, Kelly C.
    Viana, Ricardo L.
    Caldas, Ibere L.
    Batista, Antonio M.
    BRAZILIAN JOURNAL OF PHYSICS, 2023, 53 (06)
  • [2] Stability analysis of a fractional-order cancer model with chaotic dynamics
    Naik, Parvaiz Ahmad
    Zu, Jian
    Naik, Mehraj-ud-din
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (06)
  • [3] Dynamics of Arms Race Model at Fractional Order
    Suansook, Yoothana
    2015 FIRST ASIAN CONFERENCE ON DEFENCE TECHNOLOGY (ACDT), 2015, : 160 - 165
  • [4] Using Recurrence Analysis to Examine Group Dynamics
    Knight, Andrew P.
    Kennedy, Deanna M.
    McComb, Sara A.
    GROUP DYNAMICS-THEORY RESEARCH AND PRACTICE, 2016, 20 (03) : 223 - 241
  • [5] Editorial: Recurrence Analysis of Complex Systems Dynamics
    Beim Graben, Peter
    Hutt, Axel
    Marwan, Norbert
    Uhl, Christian
    Webber, Charles L., Jr.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2020, 6
  • [6] Football Match Dynamics Explored by Recurrence Analysis
    Lames, Martin
    Hermann, Sebastian
    Pruessner, Rene
    Meth, Hendrik
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [7] Stability and bifurcation analysis for a fractional-order cancer model with two delays
    Wang, Jinbin
    Liu, Jiankang
    Zhang, Rui
    CHAOS SOLITONS & FRACTALS, 2023, 173
  • [8] Fractional Order Operator for Symmetric Analysis of Cancer Model on Stem Cells with Chemotherapy
    Azeem, Muhammad
    Farman, Muhammad
    Akgul, Ali
    De la Sen, Manuel
    SYMMETRY-BASEL, 2023, 15 (02):
  • [9] Fractional order mathematical model of monkeypox transmission dynamics
    Peter, Olumuyiwa James
    Oguntolu, Festus Abiodun
    Ojo, Mayowa M.
    Oyeniyi, Abdulmumin Olayinka
    Jan, Rashid
    Khan, Ilyas
    PHYSICA SCRIPTA, 2022, 97 (08)
  • [10] Analysis of a fractional SEIR model with treatment
    Almeida, Ricardo
    APPLIED MATHEMATICS LETTERS, 2018, 84 : 56 - 62