Genotype and SNP calling from next-generation sequencing data

被引:0
作者
Rasmus Nielsen
Joshua S. Paul
Anders Albrechtsen
Yun S. Song
机构
[1] University of California,Department of Integrative Biology
[2] Centre for Bioinformatics,Department of Statistics
[3] University of Copenhagen,Department of Electrical Engineering and Computer Sciences
[4] University of California,undefined
[5] University of California,undefined
来源
Nature Reviews Genetics | 2011年 / 12卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Converting next-generation sequencing (NGS) image files into a set of called SNPs involves a number of steps including image analysis, alignment and assembly, SNP calling and genotype calling.Genotype probabilities for a single individual can be calculated from alignments using recalibrated quality scores.SNP calling and genotype calling is best done using information from multiple individuals simultaneously. The pattern of linkage disequilibrium should be used to call SNPs and genotypes when possible.Analyses of low coverage data can proceed by taking uncertainty in the genotype calls into account, rather than assuming any particular genotype call is correct.The methods used for calling SNPs and for taking uncertainty in SNP genotypes into account can have a strong effect on downstream analyses, including association mapping analyses.
引用
收藏
页码:443 / 451
页数:8
相关论文
共 50 条
  • [31] PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies
    Liao, Peizhou
    Satten, Glen A.
    Hu, Yi-Juan
    GENETIC EPIDEMIOLOGY, 2017, 41 (05) : 375 - 387
  • [32] Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data
    Kosugi, Shunichi
    Natsume, Satoshi
    Yoshida, Kentaro
    MacLean, Daniel
    Cano, Liliana
    Kamoun, Sophien
    Terauchi, Ryohei
    PLOS ONE, 2013, 8 (10):
  • [33] Empirical Bayes single nucleotide variant-calling for next-generation sequencing data
    Ali Karimnezhad
    Theodore J. Perkins
    Scientific Reports, 14
  • [34] Validation and assessment of variant calling pipelines for next-generation sequencing
    Pirooznia, Mehdi
    Kramer, Melissa
    Parla, Jennifer
    Goes, Fernando S.
    Potash, James B.
    McCombie, W. Richard
    Zandi, Peter P.
    HUMAN GENOMICS, 2014, 8 : 14
  • [35] Validation and assessment of variant calling pipelines for next-generation sequencing
    Mehdi Pirooznia
    Melissa Kramer
    Jennifer Parla
    Fernando S Goes
    James B Potash
    W Richard McCombie
    Peter P Zandi
    Human Genomics, 8
  • [36] BASE CALLING ERROR RATES IN NEXT-GENERATION DNA SEQUENCING
    Shamaiah, Manohar
    Vikalo, Haris
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 692 - 695
  • [37] Next-Generation Sequencing Data Analysis
    Chowdhry, Amit K.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2025, 188 (02) : 631 - 631
  • [38] Indexing Next-Generation Sequencing data
    Jalili, Vahid
    Matteucci, Matteo
    Masseroli, Marco
    Ceri, Stefano
    INFORMATION SCIENCES, 2017, 384 : 90 - 109
  • [39] A Targeted Next-Generation Sequencing Panel to Genotype Gliomas
    Guarnaccia, Maria
    Guarnaccia, Laura
    La Cognata, Valentina
    Navone, Stefania Elena
    Campanella, Rolando
    Ampollini, Antonella
    Locatelli, Marco
    Miozzo, Monica
    Marfia, Giovanni
    Cavallaro, Sebastiano
    LIFE-BASEL, 2022, 12 (07):
  • [40] Concod: an effective integration framework of consensus-based calling deletions from next-generation sequencing data
    Cai, Lei
    Chu, Chong
    Zhang, Xiaodong
    Wu, Yufeng
    Gao, Jingyang
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (02) : 153 - 172