Some properties of r-circulant matrices with k-balancing and k-Lucas balancing numbers

被引:0
作者
Kalika Prasad
Hrishikesh Mahato
Munesh Kumari
机构
[1] Central University of Jharkhand,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2023年 / 29卷
关键词
-Balancing number; -circulant matrix; Determinant; Euclidean norms; Spectral norm; Spread; 11B37; 15B36; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let us define the r-circulant matrix Cr=Circr(c0,c1,c2,…,cn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_r = Circ_r(c_0, c_1,c_2,\ldots ,c_{n-1})$$\end{document} such that the entries of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_r $$\end{document} are ci=Bk,s+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i=B_{k,s+it}$$\end{document} or ci=Ck,s+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_i=C_{k,s+it}$$\end{document}, where Bk,s+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{k,s+it}$$\end{document} and Ck,s+it\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{k,s+it}$$\end{document} are k-balancing and k-Lucas balancing numbers, respectively having arithmetic indices. In this study, we investigate the eigenvalues, determinants, Euclidean norm and bounds estimation for the spectral norm and spread of these matrices and obtain some new identities for the given sequences. Moreover, we extend the study to the corresponding right circulant and skew-right circulant matrices.
引用
收藏
相关论文
共 49 条
  • [1] Behera A(1999)On the square roots of triangular numbers Fibonacci Q. 37 98-105
  • [2] Panda G(2017)On the properties of k-balancing and k-Lucas-balancing numbers Acta Comment. Univ. Tartu. Math. 21 259-274
  • [3] Ray PK(2019)On balancing polynomials Appl. Math. Sci. 13 57-66
  • [4] Frontczak R(2019)Identities for generalized balancing numbers Notes Number Theory Discret. Math. 25 169-180
  • [5] Frontczak R(2006)Some fascinating properties of balancing numbers Fibonacci Numbers Appl. 10 25-49
  • [6] Panda G(2007)The k-Fibonacci sequence and the pascal 2-triangle Chaos Solitons Fractals 33 38-11
  • [7] Falcon S(2015)Tridigonal matrices via k-balancing number Brit. J. Math. Comput. Sci. 10 1-39
  • [8] Plaza Á(2014)Note on right circulant matrices with Pell and Pell–Lucas sequences Sci. Magna 10 11-95
  • [9] Özkoc A(2017)On r-circulant matrices with Fibonacci and Lucas numbers having arithmetic indices AIP Conf. Proc. 1905 31-368
  • [10] Bueno ACF(2016)On the norms of r-Toeplitz matrices involving Fibonacci and Lucas numbers Adv. Linear Algebra Matrix Theory 6 89-19