Multiplier bootstrap methods for conditional distributions

被引:0
作者
Félix Camirand Lemyre
Jean-François Quessy
机构
[1] Université de Sherbrooke,Département de mathématiques
[2] Université du Québec à Trois-Rivières,Département de mathématiques et d’informatique
来源
Statistics and Computing | 2017年 / 27卷
关键词
Covariate; Empirical processes; Functional delta method; Kernel estimator; Statistical functionals;
D O I
暂无
中图分类号
学科分类号
摘要
The multiplier bootstrap is a fast and easy-to-implement alternative to the standard bootstrap; it has been used successfully in many statistical contexts. In this paper, resampling methods based on multipliers are proposed in a general framework where one investigates the stochastic behavior of a random vector Y∈Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {Y}\in \mathbb {R}^d$$\end{document} conditional on a covariate X∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \in \mathbb {R}$$\end{document}. Specifically, two versions of the multiplier bootstrap adapted to empirical conditional distributions are introduced as alternatives to the conditional bootstrap and their asymptotic validity is formally established. As the method walks hand-in-hand with the functional delta method, theory around the estimation of statistical functionals is developed accordingly; this includes the interval estimation of conditional mean and variance, conditional correlation coefficient, Kendall’s dependence measure and copula. Composite inference about univariate and joint conditional distributions is also considered. The sample behavior of the new bootstrap schemes and related estimation methods are investigated via simulations and an illustration on real data is provided.
引用
收藏
页码:805 / 821
页数:16
相关论文
共 27 条
[1]  
Aerts M(1994)Bootstrapping regression quantiles J. Nonparametr. Stat. 4 1-20
[2]  
Janssen P(2013)Empirical and sequential empirical copula processes under serial dependence J. Multivar. Anal. 119 61-70
[3]  
Veraverbeke N(2014)Robust nonparametric confidence intervals for regression-discontinuity designs Econometrica 82 2295-2326
[4]  
Bücher A(2011)Conditional copulas, association measures and their applications Comput. Stat. Data Anal. 55 1919-1932
[5]  
Volgushev S(1991)Bootstrap simultaneous error bars for nonparametric regression Ann. Stat. 19 778-796
[6]  
Calonico S(2009)Goodness-of-fit tests for parametric regression models based on empirical characteristic functions Kybernetika 45 960-971
[7]  
Cattaneo MD(1966)Some concepts of dependence Ann. Math. Stat. 37 1137-1153
[8]  
Titiunik R(2008)Dependence structure of conditional Archimedean copulas J. Multivar. Anal. 99 372-385
[9]  
Gijbels I(2013)Bootstrapping the conditional copula J. Stat. Plan. Inference 143 1-23
[10]  
Veraverbeke N(1972)Non-parametric function fitting J. R. Stat. Soc. Ser. B 34 385-392