The robustness of the generalized Gini index

被引:0
|
作者
S. Settepanella
A. Terni
M. Franciosi
L. Li
机构
[1] Torino University,Department of Economics and Statistics
[2] Pisa University,Department of Mathematics
[3] Guangzhou College of Commerce,School of Economics
来源
Decisions in Economics and Finance | 2022年 / 45卷
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric; 28B05; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}, which we call zonoid map, from the space of all non-negative, finite Borel measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with finite first moment to the space of zonoids of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875–907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 50 条
  • [31] ABOUT THE ACCURACY OF GINI INDEX FOR MEASURING THE POVERTY
    Stefanescu, Stefan V.
    ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2011, 14 (03): : 255 - 266
  • [32] Gintropy: Gini Index Based Generalization of Entropy
    Biro, Tamas S.
    Neda, Zoltan
    ENTROPY, 2020, 22 (08)
  • [33] On the capacity of the Gini index to represent income distributions
    Yang Liu
    Joseph L. Gastwirth
    METRON, 2020, 78 : 61 - 69
  • [34] The Marginal Effects in Subgroup Decomposition of the Gini Index
    Ogwang, Tomson
    JOURNAL OF OFFICIAL STATISTICS, 2016, 32 (03) : 733 - 745
  • [35] Distributions and moments for estimators of Gini index in an exponential distribution
    Suk -Bok Kang
    Young -Suk Cho
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (1): : 213 - 222
  • [36] Gini Index in Czech Republic in 1995-2010
    Marek, Lubos
    STATISTIKA-STATISTICS AND ECONOMY JOURNAL, 2011, 48 (02) : 42 - 48
  • [37] THE DEGREE PROFILE AND GINI INDEX OF RANDOM CATERPILLAR TREES
    Zhang, Panpan
    Dey, Dipak K.
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2019, 33 (04) : 511 - 527
  • [38] Gini index based initial coin offering mechanism
    Guo, Mingyu
    Wang, Zhenghui
    Sakurai, Yuko
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (01)
  • [39] Transformations that minimize the Gini index of a random variable and applications
    Michael McAsey
    Libin Mou
    The Journal of Economic Inequality, 2022, 20 : 483 - 502
  • [40] A vector valued bivariate gini index for truncated distributions
    E. I. Abdul-Sathar
    R. P. Suresh
    K. R. Muraleedharan Nair
    Statistical Papers, 2007, 48 : 543 - 557