The robustness of the generalized Gini index

被引:0
|
作者
S. Settepanella
A. Terni
M. Franciosi
L. Li
机构
[1] Torino University,Department of Economics and Statistics
[2] Pisa University,Department of Mathematics
[3] Guangzhou College of Commerce,School of Economics
来源
Decisions in Economics and Finance | 2022年 / 45卷
关键词
Gini index; Zonoid; Empirical distribution; Hausdorff metric; 28B05; 28A78;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}, which we call zonoid map, from the space of all non-negative, finite Borel measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} with finite first moment to the space of zonoids of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. This map, connecting Borel measure theory with zonoids theory, allows to slightly generalize the Gini volume introduced, in the context of Industrial Economics, by Dosi (J Ind Econ 4:875–907, 2016). This volume, based on the geometric notion of zonoid, is introduced as a measure of heterogeneity among firms in an industry and it turned out to be a quite interesting index as it is a multidimensional generalization of the well-known and broadly used Gini index. By exploiting the mathematical context offered by our definition, we prove the continuity of the map Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} which, in turn, allows to prove the validity of a SLLN-type theorem for our generalized Gini index and, hence, for the Gini volume. Both results, the continuity of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} and the SLLN theorem, are particularly useful when dealing with a huge amount of multidimensional data.
引用
收藏
页码:521 / 539
页数:18
相关论文
共 50 条
  • [1] The robustness of the generalized Gini index
    Settepanella, S.
    Terni, A.
    Franciosi, M.
    Li, L.
    DECISIONS IN ECONOMICS AND FINANCE, 2022, 45 (02) : 521 - 539
  • [2] Intersecting generalized Lorenz curves and the Gini index
    Claudio Zoli
    Social Choice and Welfare, 1999, 16 : 183 - 196
  • [3] GINI INDEX ON GENERALIZED r-PARTITIONS
    Mansour, Toufik
    Schork, Matthias
    Shattuck, Mark
    Wagner, Stephan
    MATHEMATICA SLOVACA, 2022, 72 (05) : 1129 - 1144
  • [4] Fair and efficient vaccine allocation: A generalized Gini index approach
    Gutjahr, Walter J.
    PRODUCTION AND OPERATIONS MANAGEMENT, 2023, 32 (12) : 4114 - 4134
  • [5] A multidimensional Gini index
    Banerjee, Asis Kumar
    MATHEMATICAL SOCIAL SCIENCES, 2010, 60 (02) : 87 - 93
  • [6] A generalized performance equation and its application in measuring the Gini index of leaf size inequality
    Lian, Meng
    Shi, Peijian
    Zhang, Liuyue
    Yao, Weihao
    Gielis, Johan
    Niklas, Karl J.
    TREES-STRUCTURE AND FUNCTION, 2023, 37 (5): : 1555 - 1565
  • [7] A generalized performance equation and its application in measuring the Gini index of leaf size inequality
    Meng Lian
    Peijian Shi
    Liuyue Zhang
    Weihao Yao
    Johan Gielis
    Karl J. Niklas
    Trees, 2023, 37 : 1555 - 1565
  • [8] The Gini Index of an Integer Partition
    Kopitzke, Grant
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (09)
  • [9] Computing the Gini index: A note
    Furman, Edward
    Kye, Yisub
    Su, Jianxi
    ECONOMICS LETTERS, 2019, 185
  • [10] Shrinkage estimation of Gini index
    Ghori, R.
    Ahmed, S. E.
    Hussein, A. A.
    CONTRIBUTIONS TO PROBABILITY AND STATISTICS: APPLICATIONS AND CHALLENGES, 2006, : 234 - +