Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems

被引:0
作者
Sashikumaar Ganesan
Lutz Tobiska
机构
[1] Otto von Guericke University,Institute for Analysis and Computational Mathematics, Department of Mathematics
来源
Journal of Scientific Computing | 2010年 / 43卷
关键词
Convection–diffusion equations; Incompressible flows; Local projection stabilization; Finite elements; Boundary layers;
D O I
暂无
中图分类号
学科分类号
摘要
We give a survey on recent developments of stabilization methods based on local projection type. The considered class of problems covers scalar convection–diffusion equations, the Stokes problem and the linearized Navier–Stokes equations. A new link of local projection to the streamline diffusion method is shown. Numerical tests for different type of boundary layers arising in convection–diffusion problems illustrate the stabilizing properties of the method.
引用
收藏
页码:326 / 342
页数:16
相关论文
共 52 条
  • [1] Baiocchi C.(1993)Virtual bubbles and GaLS Comput. Methods Appl. Mech. Eng. 105 125-142
  • [2] Brezzi F.(2001)A finite element pressure gradient stabilization for the Stokes equations based on local projections Calcolo 38 173-199
  • [3] Franca L.P.(2006)Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method SIAM J. Numer. Anal. 43 2544-2566
  • [4] Becker R.(2007)Stabilized finite element methods for the generalized Oseen problem Comput. Methods Appl. Mech. Eng. 196 853-866
  • [5] Braack M.(1998)Applications of the pseudo residual-free bubbles to the stabilization of convection–diffusion problems Comput. Methods Appl. Mech. Eng. 166 51-63
  • [6] Braack M.(1994)Choosing bubbles for advection–diffusion problems Math. Models Methods Appl. Sci. 4 571-587
  • [7] Burman E.(1982)Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations Comput. Methods Appl. Mech. Eng. 32 199-259
  • [8] Braack M.(2005)A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty SIAM J. Numer. Anal. 43 2012-2033
  • [9] Burman E.(2007)Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations Math. Comput. 76 1119-1140
  • [10] John V.(2006)Continuous interior penalty finite element method for Oseen’s equations SIAM J. Numer. Anal. 44 1248-1274