An ħ-dependent formulation of the Kadomtsev-Petviashvili hierarchy

被引:0
作者
K. Takasaki
T. Takebe
机构
[1] Kyoto University,Graduate School of Human and Environmental Studies
[2] Higher School of Economics,Faculty of Mathematics
来源
Theoretical and Mathematical Physics | 2012年 / 171卷
关键词
ħ-expansion; Riemann-Hilbert problem; quantization; recurrence relation;
D O I
暂无
中图分类号
学科分类号
摘要
We briefly review a recursive construction of ħ-dependent solutions of the Kadomtsev-Petviashvili hierarchy. We give recurrence relations for the coefficients Xn of an ħ-expansion of the operator X = X0 + ħX1 + ħ2X2 + ... for which the dressing operator W is expressed in the exponential form W = eX/ħ. The wave function Ψ associated with W turns out to have the WKB (Wentzel-Kramers-Brillouin) form Ψ = eS/kh, and the coefficients Sn of the ħ-expansion S = S0 + ħS1 + ħ2S2 + ... are also determined by a set of recurrence relations. We use this WKB form to show that the associated tau function has an ħ-expansion of the form log τ = ħ−2F0 + ħ−1F1 + F2 + ....
引用
收藏
页码:683 / 690
页数:7
相关论文
共 9 条
  • [1] Kodama Y.(1988)undefined Phys. Lett. A 129 223-226
  • [2] Krichever I. M.(1991)undefined Commun. Math. Phys. 143 415-426
  • [3] Takasaki K.(1992)undefined Internat. J. Mod. Phys. A 7 889-922
  • [4] Takebe T.(1986)undefined Lett. Math. Phys. 12 171-179
  • [5] Orlov A. Yu.(1986)undefined Ann. Inst. Fourier 36 143-165
  • [6] Schulman E. I.(1995)undefined Rev. Math. Phys. 7 743-803
  • [7] Aoki T.(undefined)undefined undefined undefined undefined-undefined
  • [8] Takasaki K.(undefined)undefined undefined undefined undefined-undefined
  • [9] Takebe T.(undefined)undefined undefined undefined undefined-undefined