Unconditional L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions

被引:0
作者
Tingchun Wang
Xiaofei Zhao
机构
[1] Nanjing University of Information Science and Technology,School of Mathematics and Statistics
[2] Université de Rennes 1,INRIA
关键词
Nonlinear Schrödinger equation in multi-dimensions; Compact finite difference method; Conservation laws; Unconditional convergence; Optimal ; -error estimate; 65M06; 65M12;
D O I
10.1007/s10092-018-0277-0
中图分类号
学科分类号
摘要
This paper is concerned with the unconditional and optimal L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-error estimates of two fourth-order (in space) compact conservative finite difference time domain schemes for solving the nonlinear Schrödinger equation in two or three space dimensions. The fact of high space dimension and the approximation via compact finite difference discretization bring difficulties in the convergence analysis. The two proposed schemes preserve the total mass and energy in the discrete sense. To establish the optimal convergence results without any constraint on the time step, besides the standard energy method, the cut-off function technique as well as a ‘lifting’ technique are introduced. On the contrast, previous works in the literature often require certain restriction on the time step. The convergence rate of the proposed schemes are proved to be of O(h4+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^4+\tau ^2)$$\end{document} with time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and mesh size h in the discrete L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document}-norm. The analysis method can be directly extended to other finite difference schemes for solving the nonlinear Schrödinger-type equations. Numerical results are reported to support our theoretical analysis, and investigate the effect of the nonlinear term and initial data on the blow-up solution.
引用
收藏
相关论文
共 114 条
[1]  
Anderson MH(1995)Observation of Bose–Einstein condensation in a dilute atomic vapor Science 269 198-201
[2]  
Ensher JR(2013)Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations Comput. Phys. Commun. 184 2621-2633
[3]  
Matthews MR(2016)High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross–Pitaevskii equations J. Comput. Phys. 327 252-269
[4]  
Wieman CE(1987)An engineers guide to solitons phenomena: application of the finite element method Comput. Methods Appl. Mech. Eng. 61 71-122
[5]  
Cornell EA(1991)On fully discrete Galerkin methods of secondorder temporal accuracy for the nonlinear Schrödinger equation Numer. Math. 59 31-53
[6]  
Antoine X(2012)Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator SIAM J. Numer. Anal. 50 492-521
[7]  
Bao W(2013)Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation Math. Comput. 82 99-128
[8]  
Besse C(2013)Mathematical theorey and numerical methods for Bose–Einstein condensation Kinet. Relat. Models 6 1-135
[9]  
Antoine X(2006)Dynamics of rotating Bose–Einstein condensates and its efficient and accurate numerical computation SIAM J. Appl. Math. 66 758-786
[10]  
Besse C(2003)Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation J. Comput. Phys. 187 318-342