The Cesa`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\mathbf{a }}$$\end{document}ro χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} of tensor products in Orlicz sequence spaces

被引:0
作者
N. Subramanian
机构
[1] Sastra University,Department of Mathematics
关键词
Analytic sequence; Double sequences; space; Ces; ro ; Musielak-Orlicz function; -metric space; Banach metric lattice; Positive tensor product; 46B42; 46B28;
D O I
10.1007/s13370-016-0469-1
中图分类号
学科分类号
摘要
Let X be a Banach lattice and χf2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}_{f}$$\end{document} be an double gai Orlicz sequence space associated to an Orlicz function with the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{2}$$\end{document}- condition. In this paper we define the Cesa`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\mathbf{a }}$$\end{document}ro χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} sequence space Cespqχf2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{p}^{q}\left( \chi ^{2}_{f}\right) $$\end{document} generated by a Orlicz sequence space and exhibit some general properties of the spaces.
引用
收藏
页码:615 / 628
页数:13
相关论文
共 42 条
[21]  
Dutta AJ(2013)Some sequence spaces in 2-normed spaces defined by Musielak Orlicz function J. Math. 11 577-587
[22]  
Tripathy BC(1971)Some new Lacunary strong convergent vector-valued multiplier difference sequence spaces defined by a Musielak-Orlicz function Israel J. Math. 10 379-390
[23]  
Chandra P(undefined)Ideal convergent sequence spaces defined by a Musielak-Orlicz function undefined undefined undefined-undefined
[24]  
Tripathy BC(undefined)On Orlicz sequence spaces undefined undefined undefined-undefined
[25]  
Dutta AJ(undefined)undefined undefined undefined undefined-undefined
[26]  
Turkmenoglu A(undefined)undefined undefined undefined undefined-undefined
[27]  
Raj K(undefined)undefined undefined undefined undefined-undefined
[28]  
Sharma SK(undefined)undefined undefined undefined undefined-undefined
[29]  
Raj K(undefined)undefined undefined undefined undefined-undefined
[30]  
Sharma AK(undefined)undefined undefined undefined undefined-undefined