The Cesa`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\mathbf{a }}$$\end{document}ro χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} of tensor products in Orlicz sequence spaces

被引:0
作者
N. Subramanian
机构
[1] Sastra University,Department of Mathematics
关键词
Analytic sequence; Double sequences; space; Ces; ro ; Musielak-Orlicz function; -metric space; Banach metric lattice; Positive tensor product; 46B42; 46B28;
D O I
10.1007/s13370-016-0469-1
中图分类号
学科分类号
摘要
Let X be a Banach lattice and χf2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}_{f}$$\end{document} be an double gai Orlicz sequence space associated to an Orlicz function with the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{2}$$\end{document}- condition. In this paper we define the Cesa`\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\grave{\mathbf{a }}$$\end{document}ro χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} sequence space Cespqχf2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{p}^{q}\left( \chi ^{2}_{f}\right) $$\end{document} generated by a Orlicz sequence space and exhibit some general properties of the spaces.
引用
收藏
页码:615 / 628
页数:13
相关论文
共 42 条
[1]  
Hardy GH(1917)On the convergence of certain multiple series Proc. Camb. Philos. Soc. 19 86-95
[2]  
Moricz F(1991)Extentions of the spaces Acta Mathematica Hungariga 57 129-136
[3]  
Moricz F(1988) and Math. Proc. Camb. Philos. Soc. 104 283-294
[4]  
Rhoades BE(1999) from single to double sequences J. Indian Acad. Math. 21 193-200
[5]  
Basarir M(2003)Almost convergence of double sequences and strong regularity of summability matrices Tamkang J. Math. 34 231-237
[6]  
Solancan O(2006)On some double sequence spaces Tamkang J. Math. 37 155-162
[7]  
Tripathy BC(2007)On statistically convergent double sequences Math. Comput. Model. 46 1294-1299
[8]  
Tripathy BC(2008)Characterization of some matrix classes involving paranormed sequence spaces Math. Inequal. Appl. 11 543-548
[9]  
Sen M(2008)On fuzzy real-valued double sequence spaces Acta Mathematica Sinica 24 737-742
[10]  
Tripathy BC(2009) convergent sequence spaces associated with multiplier sequence spaces Mathematica Slovaca 59 767-776