Topological spaces with Skorokhod representation property

被引:0
作者
Banakh T.O. [1 ]
Bogachev V.I. [2 ]
Kolesnikov A.V. [2 ]
机构
[1] Lviv National University, Lviv
[2] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Probability Measure; Recent Result; Topological Space; Convergent Sequence; Classical Theorem;
D O I
10.1007/s11253-006-0002-z
中图分类号
学科分类号
摘要
We give a survey of recent results that generalize and develop a classical theorem of Skorokhod on representation of weakly convergent sequences of probability measures by almost everywhere convergent sequences of mappings. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1371 / 1386
页数:15
相关论文
共 41 条
  • [1] Skorokhod A.V., Limit theorems for stochastic processes, Theory Probab. Appl., 1, 3, pp. 261-290, (1956)
  • [2] Skorokhod A.V., Studies in the Theory of Random Processes, (1965)
  • [3] Blackwell D., Dubins L.E., An extension of Skorokhod's almost sure representation theorem, Proc. Amer. Math. Soc., 89, 4, pp. 691-692, (1983)
  • [4] Dudley R.M., Distances of probability measures and random variables, Ann. Math. Statist., 39, pp. 1563-1572, (1967)
  • [5] Fernique X., Un modèle presque sûr pour la convergence en loi, C. R. Acad. Sci. Paris. Sér. 1, 306, pp. 335-338, (1988)
  • [6] Jakubowski A., The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42, 1, pp. 167-174, (1997)
  • [7] Letta G., Pratelli L., Le théorème de Skorokhod pour des lois de Radon sur un espace métrisable, Rend. Accad. Naz. XL Mem. Mat. Appl., 21, 5, pp. 157-162, (1997)
  • [8] Schief A., Almost surely convergent random variables with given laws, Probab. Theory Relat. Fields., 81, pp. 559-567, (1989)
  • [9] Szczotka W., A note on Skorokhod representation, Bull. Pol. Acad. Sci. Math., 38, pp. 35-39, (1990)
  • [10] Wichura M.J., On the construction of almost uniformly convergent random variables with given weakly convergent image laws, Ann. Math. Statist., 41, 1, pp. 284-291, (1970)