Application of DFT methods to the study of the coordination environment of the VO2+ ion in V proteins

被引:0
|
作者
Daniele Sanna
Vincent L. Pecoraro
Giovanni Micera
Eugenio Garribba
机构
[1] Istituto CNR di Chimica Biomolecolare,Department of Chemistry
[2] University of Michigan,Dipartimento di Chimica e Farmacia, Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna
[3] Università di Sassari,undefined
来源
JBIC Journal of Biological Inorganic Chemistry | 2012年 / 17卷
关键词
Vanadium; Proteins; Density functional theory methods; Electron paramagnetic resonance spectroscopy; Electron spin echo envelope modulation spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
Density functional theory (DFT) methods were used to simulate the environment of vanadium in several V proteins, such as vanadyl-substituted carboxypeptidase (sites A and B), vanadyl-substituted chloroplast F1-ATPase (CF1; site 3), the reduced inactive form of vanadium bromoperoxidase (VBrPO; low- and high-pH sites), and vanadyl-substituted imidazole glycerol phosphate dehydratase (IGPD; sites α, β, and γ). Structural, electron paramagnetic resonance, and electron spin echo envelope modulation parameters were calculated and compared with the experimental values. All the simulations were performed in water within the framework of the polarizable continuum model. The angular dependence of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| {A_{\rm{iso}}^{\rm{N}} } \right| $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left| {A_{z}^{\rm{N}} } \right| $$\end{document} on the dihedral angle θ between the V=O and N–C bonds and on the angle φ between the V=O and V–N bonds, where N is the coordinated aromatic nitrogen atom, was also found. From the results it emerges that it is possible to model the active site of a vanadium protein through DFT methods and determine its structure through the comparison between the calculated and experimental spectroscopic parameters. The calculations confirm that the donor sets of sites B and A of vanadyl-substituted carboxypeptidase are [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Glu}}^{ - } $$\end{document}, H2O, H2O, H2O] and [NHis(||), NHis(⊥), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Glu}}^{ - } $$\end{document}, H2O], and that the donor set of site 3 of CF1-ATPase is [\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Asp}}^{ - } $$\end{document}, OHThr, H2O, H2O, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{NH}}_{{ 2 {\text{Lys}}}}^{\text{ax}} $$\end{document}]. For VBrPO, the coordination modes [NHis(||), NHis(∠), OHSer, H2O, H2Oax] for the low-pH site and [NHis(||), NHis(∠), OHSer, OH–, H2Oax] or [NHis(||), NHis(∠), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{O}}_{\text{Ser}}^{ - } $$\end{document}, H2O] for the high-pH site, with an imidazole ring of histidine strongly displaced from the equatorial plane, can be proposed. Finally, for sites α, β, and γ of IGPD, the subsequent deprotonation of one, two, and three imidazole rings of histidine and the participation of a carboxylate group of a glutamate residue ([NHis(||), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Glu}}^{ - } $$\end{document}, H2O, H2O], [NHis(||), NHis(||), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Glu}}^{ - } $$\end{document}, H2O], and [NHis(||), NHis(||), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{COO}}_{\text{Glu}}^{ - } $$\end{document}, OH−, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{N}}_{\text{His}}^{\text{ax}} $$\end{document}], respectively) seems to be the most plausible hypothesis.
引用
收藏
页码:773 / 790
页数:17
相关论文
共 34 条
  • [1] Application of DFT methods to the study of the coordination environment of the VO2+ ion in V proteins
    Sanna, Daniele
    Pecoraro, Vincent L.
    Micera, Giovanni
    Garribba, Eugenio
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2012, 17 (05): : 773 - 790
  • [2] Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application
    Zhang, Wenguang
    Xi, Jingyu
    Li, Zhaohua
    Zhou, Haipeng
    Liu, Le
    Wu, Zenghua
    Qiu, Xinping
    ELECTROCHIMICA ACTA, 2013, 89 : 429 - 435
  • [3] Synergistic Catalysis of SnO2-CNTs Composite for VO2+/VO2+ and V2+/V3+ Redox Reactions
    Feng, Xiaojian
    Xue, Jing
    Zhang, Tongxue
    Zhang, Zixuan
    Han, Chao
    Dai, Lei
    Wang, Ling
    He, Zhangxing
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [4] Synergistic Catalysis of SnO2/Reduced Graphene Oxide for VO2+/VO2+ and V2+/V3+ Redox Reactions
    Liu, Yongguang
    Jiang, Yingqiao
    Lv, Yanrong
    He, Zhangxing
    Dai, Lei
    Wang, Ling
    MOLECULES, 2021, 26 (16):
  • [5] Preparation of Carbon Nanosheet by Molten Salt Route and Its Application in Catalyzing VO2+/VO2+ Redox Reaction
    Lv, Yanrong
    Zhang, Lu
    Cheng, Gang
    Wang, Pengfei
    Zhang, Tianze
    Li, Chuanchang
    Jiang, Yingqiao
    He, Zhangxing
    Dai, Lei
    Wang, Ling
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (06) : A953 - A959
  • [6] A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds
    Sanna, Daniele
    Buglyo, Peter
    Micera, Giovanni
    Garribba, Eugenio
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2010, 15 (06): : 825 - 839
  • [7] Structural evaluation and position of the VO2+ ion in diaquacadmium(diaquabismalonato)cadmate: spectroscopic studies
    Parthipan, Krishnan
    Ramachitra, Somasundaram
    Rao, Pilutla Sambasiva
    MONATSHEFTE FUR CHEMIE, 2014, 145 (04): : 585 - 592
  • [8] A quantitative study of the biotransformation of insulin-enhancing VO2+ compounds
    Daniele Sanna
    Péter Buglyó
    Giovanni Micera
    Eugenio Garribba
    JBIC Journal of Biological Inorganic Chemistry, 2010, 15 : 825 - 839
  • [9] Application of DFT Methods in the Study of VIVO2+-Peptide Interactions
    Micera, Giovanni
    Garribba, Eugenio
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2010, (29) : 4697 - 4710
  • [10] Magnetically active coordination polymers containing VO2+ and Na+ cations linked by substituted malonic acid anions
    Bazhina, E. S.
    Aleksandrov, G. G.
    Kiskin, M. A.
    Efimov, N. N.
    Ugolkova, E. A.
    Minin, V. V.
    Sidorov, A. A.
    Novotortsev, V. M.
    Eremenko, I. L.
    RUSSIAN CHEMICAL BULLETIN, 2014, 63 (07) : 1475 - 1486