Maps preserving A∗A+AA∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}^{\varvec{*}}\varvec{A+AA}^{\varvec{*}}$$\end{document} on C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{C}^{\varvec{*}}$$\end{document}-algebras

被引:0
作者
Ali Taghavi
机构
[1] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
关键词
-algebra; -linear; -antilinear; homomorphism; linear preserver problem; real rank zero; 47B48; 46L10;
D O I
10.1007/s12044-019-0473-0
中图分类号
学科分类号
摘要
Let A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} be a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra of real-rank zero and B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} be a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-algebra with unit I. It is shown that the mapping Φ:A⟶B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi : {{\mathcal {A}}}\longrightarrow {{\mathcal {B}}}$$\end{document} which preserves arithmetic mean and satisfies Φ(A∗A)=Φ(A)∗Φ(A)+Φ(A)Φ(A)∗2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Phi (A^{*}A)=\frac{\Phi (A)^{*}\Phi (A)+\Phi (A)\Phi (A)^{*}}{2}, \end{aligned}$$\end{document}for all normal elements A∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in \mathcal {A}$$\end{document}, is an R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}-linear continuous Jordan ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism provided that 0∈RanΦ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \mathrm{Ran}\ \Phi $$\end{document}. Also, Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is the sum of a linear Jordan ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism and a conjugate-linear Jordan ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-homomorphism. This result also presents an application of maps which preserve the square absolute value.
引用
收藏
相关论文
共 46 条
[1]  
Brešar M(1993)Commuting traces of biadditive mappings, commutativity-preserving, mappings and Lie mappings Trans. Amer. Math. Soc. 335 525-546
[2]  
Brown LG(1991)-algebras of real rank zero J. Funct. Anal. 9 131-149
[3]  
Pedersen G(1992)Linear preservers on powers of matrices Linear Algebra Appl. 162–164 615-626
[4]  
Chan GH(1987)Linear maps preserving commutativity Linear Algebra Appl. 87 227-241
[5]  
Lim MH(2009)Maps preserving product Linear Algebra Appl. 431 833-842
[6]  
Choi MD(1966) on factor von Neumann algebras Proc. Amer. Math. Soc. 17 413-416
[7]  
Jafarian AA(1986)On majorization, factorization, and range inclusion of operators on Hilbert space J. Funct. Anal. 66 255-261
[8]  
Radjavi H(2009)Spectrum-preserving linear maps Linear Algebra Appl. 430 335-343
[9]  
Cui J(1992)Additivity of Jordan maps on standard Jordan operator algebras Linear Algebra Appl. 162–164 217-235
[10]  
Li CK(2013)Linear preserver problems: A brief introduction and some special techniques Linear Algebra Appl. 438 2339-2345