A Mathematical Framework for Understanding Four-Dimensional Heterogeneous Differentiation of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CD4}^{+}$$\end{document} T Cells

被引:0
作者
Tian Hong
Cihan Oguz
John J. Tyson
机构
[1] Virginia Polytechnic Institute and State University,Department of Biological Sciences
关键词
T cells; Cell differentiation; Mathematical model;
D O I
10.1007/s11538-015-0076-6
中图分类号
学科分类号
摘要
At least four distinct lineages of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CD4}^{+}$$\end{document} T cells play diverse roles in the immune system. Both in vivo and in vitro, naïve CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CD4}^{+}$$\end{document} T cells often differentiate into a variety of cellular phenotypes. Previously, we developed a mathematical framework to study heterogeneous differentiation of two lineages governed by a mutual-inhibition motif. To understand heterogeneous differentiation of CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CD4}^{+}$$\end{document} T cells involving more than two lineages, we present here a mathematical framework for the analysis of multiple stable steady states in dynamical systems with multiple state variables interacting through multiple mutual-inhibition loops. A mathematical model for CD4+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CD4}^{+}$$\end{document} T cells based on this framework can reproduce known properties of heterogeneous differentiation involving multiple lineages of this cell differentiation system, such as heterogeneous differentiation of TH1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {T}_\mathrm{H}1$$\end{document}–TH2,TH1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {T}_\mathrm{H}2, \hbox {T}_\mathrm{H}1$$\end{document}–TH17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {T}_\mathrm{H}17$$\end{document} and iTReg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {iT}_\mathrm{Reg}$$\end{document}–TH17\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {T}_\mathrm{H}17$$\end{document} under single or mixed types of differentiation stimuli. The model shows that high concentrations of differentiation stimuli favor the formation of phenotypes with co-expression of lineage-specific master regulators.
引用
收藏
页码:1046 / 1064
页数:18
相关论文
共 140 条
  • [1] Antebi YE(2013)Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates PLoS Biol 11 e1001616-85
  • [2] Bell ML(2007)Two types of Drosophila R7 photoreceptor cells are arranged randomly: a model for stochastic cell-fate determination J Comp Neurol 502 75-547
  • [3] Earl JB(2008)Transcriptome-wide noise controls lineage choice in mammalian progenitor cells Nature 453 544-241
  • [4] Britt SG(2002)Positive and negative feedback: striking a balance between necessary antagonists J Theor Biol 216 229-411
  • [5] Chang HH(2005)High-dimensional switches and the modelling of cellular differentiation J Theor Biol 233 391-663
  • [6] Hemberg M(2012)Hybrid models and biological model reduction with PyDSTool PLoS Comput Biol 8 e1002628-e1001618
  • [7] Barahona M(2011)Follicular helper CD4 T cells (TFH) Annu Rev Immunol 29 621-336
  • [8] Ingber DE(2013)Stochastic cytokine expression induces mixed T helper cell states PLoS Biol 11 e1001618-639
  • [9] Huang S(2003)Foxp3 programs the development and function of CD4+CD25+ regulatory T cells Nat Immunol 4 330-971
  • [10] Cinquin O(2013)Heterogeneous differentiation patterns of individual CD8+ T cells Science 340 635-9368