Existence and Concentration of Solutions for a Class of Kirchhoff–Boussinesq Equation with Exponential Growth in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^4$$\end{document}

被引:0
作者
Romulo D. Carlos [1 ]
Gustavo S. A. Costa [2 ]
Giovany M. Figuereido [1 ]
机构
[1] Universidade de Brasília-UnB,Departamento de Matemática
[2] Universidade Federal do Maranhão,Departamento de Matemática/CCET
关键词
Kirchhoff–Boussinesq; Nehari manifold; Primary 35B38; 35J35; Secondary 35J92;
D O I
10.1007/s00574-024-00388-6
中图分类号
学科分类号
摘要
This paper is concerned with the existence and concentration of ground state solutions for the following class of elliptic Kirchhoff–Boussinesq type problems given by Δ2u±Δpu+(1+λV(x))u=f(u)inR4,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta ^{2} u \pm \Delta _{p} u +(1+\lambda V(x))u= f(u)\quad \text {in}\ {\mathbb {R}}^{4}, \end{aligned}$$\end{document}where 2<p<4,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2< p< 4,$$\end{document}f∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C( {\mathbb {R}}, {\mathbb {R}})$$\end{document} is a nonlinearity which has subcritical or critical exponential growth at infinity and V∈C(R4,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in C({\mathbb {R}}^4,{\mathbb {R}})$$\end{document} is a potential that vanishes on a bounded domain Ω⊂R4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^4.$$\end{document} Using variational methods, we show the existence of ground state solutions, which concentrates on a ground state solution of a Kirchhoff–Boussinesq type equation in Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega .$$\end{document}
引用
收藏
相关论文
共 26 条
[1]  
Adams DR(1988)A sharp inequality of J. Moser for higher order derivatives Ann. Math. 128 385-398
[2]  
Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[3]  
Rabinowitz PH(2017)Existence and multiplicity of nontrivial solutions for some biharmonic equations with J. Differ. Equ. 262 945-977
[4]  
Chu J(2006)-Laplacian Discret. Contin. Dyn. Syst. 15 777-809
[5]  
Sun J(2011)Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff–Boussinesq models Commun. Partial Differ. Equ. 36 67-99
[6]  
Wu T(2022)On global attractor for J. Math. Anal. Appl. 518 126-708
[7]  
Chueshov I(2023) Kirchhoff–Boussinesq model with supercritical nonlinearity Matemática Contemporânea 54 123-156
[8]  
Lasiecka I(2021)Existence and concentration of ground state solutions for an equation with steep potential well and exponential critical growth Zeitschrift für Analysis und ihre Anwendungen 2 217-236
[9]  
Chueshov I(2017)Existence and concentration of ground state solutions for a class of subcritical, critical or supercritical problems with steep potential well Appl. Math. Lett. 73 128-135
[10]  
Lasiecka I(2013)The detailed proof of classical Gagliardo–Nirenberg interpolation inequality with historical remarks Trans. Am. Math. Soc. 2 645-670