Analytical equations based prediction approach for PM2.5 using artificial neural network

被引:0
作者
Jalpa Shah
Biswajit Mishra
机构
[1] Amrita School of Engineering,Electronics and Communication Engineering Department
[2] Dhirubhai Ambani Institute of Information and Communication Technology,undefined
来源
SN Applied Sciences | 2020年 / 2卷
关键词
Prediction model; PM2.5; Correlation; Artificial neural network; Air pollution monitoring; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
The worldwide, particulate matter pollution is considered one of the deadliest types of air pollution due to its significant impact on the global environment and human health. The particulate matter (PM2.5) plays a key role in evaluating the air quality index. However, the conventional PM2.5 monitoring instruments used by the air quality monitoring stations are costly, bulkier, time-consuming, and power-hungry. Furthermore, due to limited data availability and non-scalability, it is challenging to provide high spatial and temporal resolution in real-time. To overcome these challenges, we present analytical equations based prediction approach for PM2.5 using an artificial neural network. Moreover, we contribute the correlation study between PM2.5 and other pollutants using a large authenticate data set of Central Pollution Control Board online station, India. The correlation study reveals the strong correlation of eight pollutants with PM2.5, which found useful for the proposed prediction model and future research work. The computation of the proposed analytical equation using a low-cost processing tool (excel sheet) demonstrates a good match between predicted and actual results. Additionally, the derived analytical equation for the prediction can be computed using a wireless sensor node which ultimately eliminates the need for costly propriety tools. The performance of proposed analytical equation for prediction show root mean square error and coefficient of determination (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document}) 1.80 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}g/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} and 0.99 respectively using eight correlated predictors. The recalibrated prediction model with three correlated predictors show RMSE of 7.54 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}g/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^3$$\end{document} and R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} of 0.97 and proves the effectiveness of the proposed approach in implementation using minimum power-hungry gas sensors on the WSN. Therefore, obtained results demonstrate that the proposed approach is one of the promising approaches for monitoring PM2.5 without power-hungry gas sensors and bulkier analyzers.
引用
收藏
相关论文
共 130 条
[1]  
Vilcassim MR(2014)Black carbon and particulate matter (PM2.5) concentrations in New York City’s subway stations Environ Sci Technol 48 14738-14745
[2]  
Thurston GD(2003)characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data Atmos Environ 37 2571-80
[3]  
Peltier RE(2010)Estimating personal PM2.5 exposures using CO measurements in guatemalan households cooking with wood fuel J Environ Monit 12 873-8
[4]  
Gordon T(2001)Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources Atmos Environ 35 845-58
[5]  
Gehrig R(2013)WSN based air pollution monitoring system Int J Sci Eng Appl 2 55-9
[6]  
Buchmann B(2015)A survey of wireless sensor network based air pollution monitoring systems Sensors 15 31392-427
[7]  
Northcross A(2005)Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico Border in El Paso (Texas) and Ciudad Juárez (Chihuahua) Environ Modell Softw 20 547-59
[8]  
Chowdhury Z(2005)A neural network forecast for daily average PM10 concentrations in Belgium Atmos Environ 39 3279-89
[9]  
McCracken J(2016)Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese Cities Atmos Environ 147 209-23
[10]  
Canuz E(2016)Forecasting hourly PM2.5 in Santiago De Chile with emphasis on night episodes Atmos Environ 124 22-7