Interpretable machine learning for materials design

被引:0
|
作者
James Dean
Matthias Scheffler
Thomas A. R. Purcell
Sergey V. Barabash
Rahul Bhowmik
Timur Bazhirov
机构
[1] Exabyte Inc.,
[2] University of California Santa Barbara,undefined
[3] The NOMAD Laboratory at the Fritz Haber Institute,undefined
[4] Intermolecular Inc.,undefined
[5] Polaron Analytics,undefined
来源
Journal of Materials Research | 2023年 / 38卷
关键词
Keywords; Machine learning; Materials science; Chemistry; Interpretability; Rational design;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4477 / 4496
页数:19
相关论文
共 50 条
  • [41] A spectrum of explainable and interpretable machine learning approaches for genomic studies
    Conard, Ashley Mae
    DenAdel, Alan
    Crawford, Lorin
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (05):
  • [42] Interpretable Machine Learning Models for Prediction of UHPC Creep Behavior
    Zhu, Peng
    Cao, Wenshuo
    Zhang, Lianzhen
    Zhou, Yongjun
    Wu, Yuching
    Ma, Zhongguo John
    BUILDINGS, 2024, 14 (07)
  • [43] Prediction and Rational Design of Stacking Fault Energy of Austenitic Alloys Based on Interpretable Machine Learning and Chemical Composition
    Liu, Chengcheng
    Su, Hang
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (08)
  • [44] Representations of Materials for Machine Learning
    Damewood, James
    Karaguesian, Jessica
    Lunger, Jaclyn R.
    Tan, Aik Rui
    Xie, Mingrou
    Peng, Jiayu
    Gomez-Bombarelli, Rafael
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2023, 53 : 399 - 426
  • [45] Bayesian networks for interpretable machine learning and optimization
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2021, 456 : 648 - 665
  • [46] Interpretable ensemble machine learning for the prediction of the expansion of cementitious materials under external sulfate attack
    Hilloulin, Benoit
    Hafidi, Abdelhamid
    Boudache, Sonia
    Loukili, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 80
  • [47] A translucent box: interpretable machine learning in ecology
    Lucas, Tim C. D.
    ECOLOGICAL MONOGRAPHS, 2020, 90 (04)
  • [48] Accelerated design of MTX alloys with targeted magnetostructural properties through interpretable machine learning
    Hartnett, Timothy Q.
    Sharma, Vaibhav
    Garg, Sunidhi
    Barua, Radhika
    Balachandran, Prasanna, V
    ACTA MATERIALIA, 2022, 231
  • [49] Probabilistic scoring lists for interpretable machine learning
    Hanselle, Jonas
    Heid, Stefan
    Fuernkranz, Johannes
    Huellermeier, Eyke
    MACHINE LEARNING, 2025, 114 (03)
  • [50] Taxonomy and Survey of Interpretable Machine Learning Method
    Das, Saikat
    Agarwal, Namita
    Venugopal, Deepak
    Sheldon, Frederick T.
    Shiva, Sajjan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 670 - 677