Interpretable machine learning for materials design

被引:0
|
作者
James Dean
Matthias Scheffler
Thomas A. R. Purcell
Sergey V. Barabash
Rahul Bhowmik
Timur Bazhirov
机构
[1] Exabyte Inc.,
[2] University of California Santa Barbara,undefined
[3] The NOMAD Laboratory at the Fritz Haber Institute,undefined
[4] Intermolecular Inc.,undefined
[5] Polaron Analytics,undefined
来源
Journal of Materials Research | 2023年 / 38卷
关键词
Keywords; Machine learning; Materials science; Chemistry; Interpretability; Rational design;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4477 / 4496
页数:19
相关论文
共 50 条
  • [31] Interpretable machine learning model for performance characterization of lightweight concrete and composition design
    Zhao, Yuyang
    Wang, Meng
    Wang, Jian
    Zhang, Youliang
    Ren, Jiaolong
    Zhao, Hongbo
    MATERIALS TODAY COMMUNICATIONS, 2025, 45
  • [32] Interpretable machine learning models for COPD ease of breathing estimation
    Kok, Thomas T.
    Morales, John
    Deschrijver, Dirk
    Blanco-Almazan, Dolores
    Groenendaal, Willemijn
    Ruttens, David
    Smeets, Christophe
    Mihajlovic, Vojkan
    Ongenae, Femke
    Van Hoecke, Sofie
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025, : 1481 - 1495
  • [33] Machine learning in materials design: Algorithm and application*
    Song, Zhilong
    Chen, Xiwen
    Meng, Fanbin
    Cheng, Guanjian
    Wang, Chen
    Sun, Zhongti
    Yin, Wan-Jian
    CHINESE PHYSICS B, 2020, 29 (11)
  • [34] An interpretable machine learning framework for enhancing road transportation safety
    Abdulrashid, Ismail
    Chiang, Wen-Chyuan
    Sheu, Jiuh-Biing
    Mammadov, Shamkhal
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2025, 195
  • [35] Machine learning of material properties: Predictive and interpretable multilinear models
    Allen, Alice E. A.
    Tkatchenko, Alexandre
    SCIENCE ADVANCES, 2022, 8 (18)
  • [36] Learning main drivers of crop progress and failure in Europe with interpretable machine learning
    Mateo-Sanchis, Anna
    Piles, Maria
    Amoros-Lopez, Julia
    Munoz-Mari, Jordi
    Adsuara, Jose E.
    Moreno-Martinez, Alvaro
    Camps-Valls, Gustau
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
  • [37] SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables
    Al-Hussaini, Irfan
    Mitchell, Cassie S.
    BIOENGINEERING-BASEL, 2023, 10 (08):
  • [38] A framework for vehicle quality evaluation based on interpretable machine learning
    Alwadi M.
    Chetty G.
    Yamin M.
    International Journal of Information Technology, 2023, 15 (1) : 129 - 136
  • [39] Prediction of the Fatigue Strength of Steel Based on Interpretable Machine Learning
    Liu, Chengcheng
    Wang, Xuandong
    Cai, Weidong
    Yang, Jiahui
    Su, Hang
    MATERIALS, 2023, 16 (23)
  • [40] Toward interpretable machine learning: evaluating models of heterogeneous predictions
    Zhang, Ruixun
    ANNALS OF OPERATIONS RESEARCH, 2024, : 867 - 887