Interpretable machine learning for materials design

被引:0
|
作者
James Dean
Matthias Scheffler
Thomas A. R. Purcell
Sergey V. Barabash
Rahul Bhowmik
Timur Bazhirov
机构
[1] Exabyte Inc.,
[2] University of California Santa Barbara,undefined
[3] The NOMAD Laboratory at the Fritz Haber Institute,undefined
[4] Intermolecular Inc.,undefined
[5] Polaron Analytics,undefined
来源
Journal of Materials Research | 2023年 / 38卷
关键词
Keywords; Machine learning; Materials science; Chemistry; Interpretability; Rational design;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:4477 / 4496
页数:19
相关论文
共 50 条
  • [1] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496
  • [2] Toward Interpretable Machine Learning Models for Materials Discovery
    Mikulskis, Paulius
    Alexander, Morgan R.
    Winkler, David Alan
    ADVANCED INTELLIGENT SYSTEMS, 2019, 1 (08)
  • [3] Algorithms for Interpretable Machine Learning
    Rudin, Cynthia
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1519 - 1519
  • [4] Interpretable model of dielectric constant for rational design of microwave dielectric materials: a machine learning study
    Sheng, Ye
    Wu, Yabei
    Jiang, Chang
    Cui, Xiaowen
    Mao, Yuanqing
    Ye, Caichao
    Zhang, Wenqing
    JOURNAL OF MATERIALS INFORMATICS, 2025, 5 (01):
  • [5] A Survey of Interpretable Machine Learning Methods
    Wang, Yan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 232 - 237
  • [6] Machine Learning for the Discovery, Design, and Engineering of Materials
    Duan, Chenru
    Nandy, Aditya
    Kulik, Heather J.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 405 - 429
  • [7] Materials discovery and design using machine learning
    Liu, Yue
    Zhao, Tianlu
    Ju, Wangwei
    Shi, Siqi
    JOURNAL OF MATERIOMICS, 2017, 3 (03) : 159 - 177
  • [8] Exploration of materials fatigue influence factors using interpretable machine learning
    Frie, Christian
    Durmaz, Ali Riza
    Eberl, Chris
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (08) : 2752 - 2773
  • [9] Interpretable Machine Learning Prediction of Voltage and Specific Capacity for Electrode Materials
    Zhang, Zhao
    Wang, Yinghe
    Li, Shu
    Li, Shuai
    Chen, Minghua
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (08)
  • [10] Interpretable Machine Learning with Boosting by Boolean Algorithm
    Neuhaus, Nathan
    Kovalerchuk, Boris
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 307 - 311