Integration of Adsorption and Photocatalytic Degradation of Methylene Blue Using TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}$$\end{document} Supported on Granular Activated Carbon

被引:0
作者
H. Atout
A. Bouguettoucha
D. Chebli
J. M. Gatica
H. Vidal
M. Pilar Yeste
A. Amrane
机构
[1] Université Ferhat Abbas,Laboratoire de Génie des Procédés Chimiques, Département de Génie des Procédés, Faculté de Technologie
[2] Universidad de Cádiz,Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias
[3] Université de Rennes 1,Ecole Nationale Supérieure de Chimie de Rennes
[4] CNRS,undefined
[5] UMR 6226,undefined
关键词
Photocatalysis; Activated carbon; Adsorption; Methylene blue; Modelling;
D O I
10.1007/s13369-016-2369-y
中图分类号
学科分类号
摘要
An integrated process was investigated for the degradation of methylene blue (MB); it was based on the combination of adsorption and photocatalysis. A granular activated carbon (C) was considered for adsorption, which involved TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}$$\end{document} as a photocatalyst (TiO2/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}/\hbox {C}$$\end{document}). The TiO2/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}/\hbox {C}$$\end{document} was directly obtained by an impregnation method using TiCl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiCl}_{3}$$\end{document}; it was also calcined under air atmosphere at 500∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$500\,{^{\circ }}\hbox {C}$$\end{document} (TiO2/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}/\hbox {C}$$\end{document}-500). These materials were characterized by TGA, BET, SEM, EDS mapping, SEM-EDS, and their pHPZC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pH}_{\mathrm{{PZC}}}$$\end{document} were measured. The results obtained showed that activated carbon (C) exhibited the best performances in terms of adsorption. The photocatalytic activity on the degradation of MB in aqueous solution under UV irradiation was tested and compared to that of TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}$$\end{document} anatase (TiO2A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}\, \hbox {A}$$\end{document}) and a mixture of carbon with TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2 }$$\end{document} (C--TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox{C--TiO}_{2}$$\end{document}). TiO2/C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}/\hbox {C}$$\end{document}-500 catalyst was found to be more active than the other catalysts; the C with high surface area provided sites for adsorption, allowing the migration of the dye to the surface of TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}$$\end{document}. A synergistic effect between C and TiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TiO}_{2}$$\end{document} was shown, which enhanced the photocatalytic activity by retarding the recombination of photogenerated electron–hole pairs, improving light absorption.
引用
收藏
页码:1475 / 1486
页数:11
相关论文
共 143 条
[1]  
Lee JW(2006)Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes Water Res. 40 435-444
[2]  
Choi SP(2014)Adsorption of Congo red dye from aqueous solution onto ash of Chem. Sci. Rev. Lett. 3 159-169
[3]  
Thiruvenkatachari R(2014) seeds: kinetic and thermodynamic studies Rev. Res. J. Chem. Sci. 4 91-102
[4]  
Shim WG(2008)Removal of methylene blue using low cost adsorbent Bioresour. Technol. 99 6678-6682
[5]  
Moon H(2012)Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons Powder Technol. 225 167-175
[6]  
Kaur H(2014)Photocatalytic degradation of methylene blue by a combination of Appl. Surf. Sci. 311 384-390
[7]  
Thakur A(2006)-anatase and coconut shell activated carbon Sci. Total Environ. 358 243-254
[8]  
Mohammed MA(2004)Enhanced photocatalytic activity of J. Phys. Chem. B. 108 3303-3310
[9]  
Shitu A(2007)/carbon@ J. Hazard. Mater. 141 581-590
[10]  
Ibrahim A(2013) core-shell nanocomposite prepared by two-step hydrothermal method J. Hazard. Mater. 262 16-24