Common Ramification Points of Pencils on Double Covering Curves

被引:0
作者
Ballico E. [1 ]
Keem C. [2 ]
机构
[1] Dipartimento di Matematica, Università di Trento, Povo (TN)
[2] Department of Mathematics, Seoul National University, Seoul
关键词
14H45; 14H51; bielliptic curve; double covering; h-hyperelliptic curve; ramification point;
D O I
10.1007/BF03322865
中图分类号
学科分类号
摘要
Let f: X → C be a “ general ” double covering of a smooth curve C of genus h ≥ 1. Here we show (with some restrictions on C if h ≥ 2) that there is no P ∈ X which is a common ramification point of all degree g-2h+1 morphisms X → P1. © 2004, Birkhäuser Verlag, Basel.
引用
收藏
页码:13 / 15
页数:2
相关论文
共 5 条
  • [1] Ballico E., Keem C., On multiple coverings of irrational curves, Arch. Math. (Basel), 65, 2, pp. 151-160, (1995)
  • [2] Ballico E., Keem C., Variety of linear systems on double covering curves, J. Pure Appl. Algebra, 128, 3, pp. 213-224, (1998)
  • [3] Coppens M., Keem C., Martens G., Primitive linear series on curves, Manuscripta Math., 77, pp. 237-264, (1992)
  • [4] Kani E., On Castelnuovo’s equivalence defect, J. Reine Angew. Math., 352, pp. 24-70, (1984)
  • [5] Perrin D., Courbes passant par m points généraux de P<sup>3</sup> , Mem. Soc. Math. France n., (1987)