Local Rings of Rings of Quotients

被引:0
作者
M. A. Gómez Lozano
M. Siles Molina
机构
[1] Universidad de Málaga,Departamento de Álgebra, Geometría y Topología
来源
Algebras and Representation Theory | 2008年 / 11卷
关键词
Semiprime ring; Local ring at an element; Ring of quotients; PI-element; 16E60; 16E50; 16R20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to characterize those elements in a semiprime ring R for which taking local rings at elements and rings of quotients are commuting operations. If Q denotes the maximal ring of left quotients of R, then this happens precisely for those elements if R which are von Neumann regular in Q. An intrinsic characterization of such elements is given. We derive as a consequence that the maximal left quotient ring of a prime ring with a nonzero PI-element is primitive and has nonzero socle. If we change Q to the Martindale symmetric ring of quotients, or to the maximal symmetric ring of quotients of R, we obtain similar results: an element a in R is von Neumann regular if and only if the ring of quotients of the local ring of R at a is isomorphic to the local ring of Q at a.
引用
收藏
相关论文
共 24 条
[1]  
Amitsur S.A.(1972)On rings of quotients Sympos. Math. 8 149-164
[2]  
Ánh P.N.(1991)Left orders in regular rings with minimum condition for principal one-sided ideals Math. Proc. Cambridge Philos. Soc. 109 323-333
[3]  
Márki L.(1996)On Martindale’s theorem Rocky Mt. J. Math. 26 481-483
[4]  
Ánh P.N.(2004)Morita invariance and maximal left quotient rings Comm. Algebra 32 3247-3256
[5]  
Márki L.(2001)Exchange morita rings Comm. Algebra 29 907-925
[6]  
Aranda Pino G.(1998)Goldie theorems for associative pairs Comm. Algebra 26 2987-3020
[7]  
Gómez Lozano M.(2002)Quotient rings and Fountain-Gould left orders by the local approach Acta Math. Hungar. 97 179-193
[8]  
Siles Molina M.(1996)The maximal symmetric ring of quotients J. Algebra 179 47-91
[9]  
Compañy Cabezos M.(1969)Prime rings satisfying a generalized polynomial identity J. Algebra 12 576-584
[10]  
Gómez Lozano M.(1973)On semiprime P.I. rings Proc. Amer. Math. Soc. 40 365-369