Existence result for nonlinear fractional differential equation with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian operator at resonance

被引:0
作者
Lei Hu
Shuqin Zhang
Ailing Shi
机构
[1] China University of Mining and Technology,Department of Mathematics
[2] Shandong Jiaotong University,School of Science
[3] Beijing University of Civil Engineering and Architecture,School of Science
关键词
Fractional differential equations; -Laplacian; Pointwise equicontinuity; Coincidence degree theory; 34A08; 34B15;
D O I
10.1007/s12190-014-0816-z
中图分类号
学科分类号
摘要
In this paper, we consider the existence result for the nonlinear fractional differential equations with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian operator [D0+αϕp([D0+βu](·))](t)=f(t,u(t),[D0+βu](t)),t∈(0,1),u(0)=0,[D0+βu](0)=[D0+βu](1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \big [D_{0^+}^{\alpha } \phi _p\big ( [D_{0^+}^{\beta }u](\cdot )\big )\big ](t)=f\big (t,u(t),[D_{0^+}^{\beta }u](t)\big ), \quad t \in (0,1),\\ u(0)=0,~[D_{0^+}^{\beta }u](0)=[D_{0^+}^{\beta }u](1), \end{array}\right. } \end{aligned}$$\end{document}where the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian operator is defined as ϕp(s)=|s|p-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _p(s)=|s|^{p-2}s$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, 0<α,β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha , \beta <1$$\end{document}, 1<α+β<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\alpha +\beta <2$$\end{document}, D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0^+}^{\alpha }$$\end{document} and D0+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{0^+}^{\beta }$$\end{document} denote the Caputo fractional derivatives. Though Tang et al. have studied the same equations in the article as reported by Tang (JAMC 41:119–131, 2013), the proof process is wrong. We point out their mistakes and give the correct proof of the existence result. The innovation of this article is that we establish a new definition and overcome the difficulties of the proof of compactness of the projector KP(I-Q)N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_P(I-Q)N$$\end{document}. As applications, two examples are presented to illustrate the main results.
引用
收藏
页码:519 / 532
页数:13
相关论文
共 19 条
[1]  
Lakshmikantham V(2007)Theory of fractional differential inequalities and applications Commun. Appl. Anal. 11 395-402
[2]  
Vatsala AS(1986)The realization of the generalized transfer equation in a medium with fractal geometry Phys. Status Solidi B 72 133-425
[3]  
Nigmatullin RR(1985)More on convergence of continuous functions and topological convergence of sets Canad. Math. Bull. 28 1-8
[4]  
Beer G(2013)Existence of solutions of two-point boundary value problems for fractional J. Appl. Math. Comput. 41 119-131
[5]  
Tang X(2011)-Laplace differential equations at resonance Electron. J. Qual. Theory Differ. Equ. 89 1-19
[6]  
Yan C(2011)Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance Comput. Math. Appl. 61 1032-1047
[7]  
Liu Q(2011)Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance J. Appl. Math. Comput. 36 417-440
[8]  
Bai C(2012)Existence of solutions for nonlinear fractional three-point boundary value problems at resonance Nonlinear Anal. Real World Appl. 13 2285-2292
[9]  
Zhang Y(2010)Solvability for a coupled system of fractional differential equations at resonance Electron. J. Differ. Equ. 135 1-10
[10]  
Bai Z(2011)A boundary value problem of fractional order at resonance Nonlinear Anal. 74 1987-1994