Stability of natural convection in a vertical layer of Brinkman porous medium

被引:0
|
作者
B. M. Shankar
Jai Kumar
I. S. Shivakumara
机构
[1] PES University,Department of Mathematics
[2] ISRO Satellite Centre,Department of Mathematics
[3] Bangalore University,undefined
来源
Acta Mechanica | 2017年 / 228卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A classical linear stability theory is applied to emphasize the effect of inertia on the stability of buoyancy-driven parallel shear flow in a vertical layer of porous medium. The Lapwood–Brinkman model with fluid viscosity different from effective viscosity is used to describe the flow in a porous medium. The resulting eigenvalue problem is solved numerically using the Chebyshev collocation method. The critical Darcy–Rayleigh number RDc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{Dc} $$\end{document}, the critical wave number ac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_\mathrm{c}$$\end{document} and the critical wave speed cc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_\mathrm{c}$$\end{document} are computed over a wide range of values of the Darcy–Prandtl number PrD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr_\mathrm{D}$$\end{document} and the Darcy number D~a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{D}}a$$\end{document}. Depending on the choice of physical parameters, instability occurs due to the presence of inertia. The value of PrD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr_\mathrm{D}$$\end{document} at which the transition from stationary to traveling-wave mode instability takes place increases with decreasing D~a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{D}}a$$\end{document}. Besides, the effect of decreasing D~a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{D}}a$$\end{document} shows destabilizing effect if the instability is via stationary mode, and on the contrary, it exhibits a dual behavior if the instability is through traveling-wave mode. The streamlines and isotherms presented herein demonstrate the development of complex dynamics at the critical state. In the energy spectrum, transition of instability from one type to another is found to take place as a function of PrD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr_\mathrm{D}$$\end{document}. The disturbance kinetic energy due to surface drag and viscous force plays no significant role in the stability of flow throughout the domain of PrD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr_\mathrm{D}$$\end{document} considered.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [1] Stability of natural convection in a vertical layer of Brinkman porous medium
    Shankar, B. M.
    Kumar, Jai
    Shivakumara, I. S.
    ACTA MECHANICA, 2017, 228 (01) : 1 - 19
  • [2] Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium
    B. M. Shankar
    Jai Kumar
    I. S. Shivakumara
    Acta Mechanica, 2017, 228 : 2269 - 2282
  • [3] Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood-Brinkman porous medium
    Shankar, B. M.
    Kumar, Jai
    Shivakumara, I. S.
    ACTA MECHANICA, 2017, 228 (06) : 2269 - 2282
  • [4] Instability of double-diffusive natural convection in a vertical Brinkman porous layer
    Lu, Shuting
    Jia, Beinan
    Wang, Jialu
    Jian, Yongjun
    MECCANICA, 2024, 59 (09) : 1539 - 1553
  • [5] Natural convection from a vertical plate in a porous medium using Brinkman's model
    Gorla, RSR
    Mansour, MA
    Sahar, MG
    TRANSPORT IN POROUS MEDIA, 1999, 36 (03) : 357 - 371
  • [6] Natural Convection from a Vertical Plate in a Porous Medium Using Brinkman's Model
    Rama Subba Reddy Gorla
    M. A. Mansour
    M. Gaid Sahar
    Transport in Porous Media, 1999, 36 : 357 - 371
  • [7] The Brinkman model for thermosolutal convection in a vertical annular porous layer
    Bennacer, R
    Beji, H
    Duval, R
    Vasseur, P
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2000, 27 (01) : 69 - 80
  • [8] Stability of Double-Diffusive Natural Convection in a Vertical Porous Layer
    Shankar, B. M.
    Naveen, S. B.
    Shivakumara, I. S.
    TRANSPORT IN POROUS MEDIA, 2022, 141 (01) : 87 - 105
  • [9] Stability of Double-Diffusive Natural Convection in a Vertical Porous Layer
    B. M. Shankar
    S. B. Naveen
    I. S. Shivakumara
    Transport in Porous Media, 2022, 141 : 87 - 105
  • [10] Stability analysis of double diffusive convection in a vertical brinkman porous enclosure
    Mamou, M
    Hasnaoui, M
    Amahmid, A
    Vasseur, P
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1998, 25 (04) : 491 - 500