Embeddings of generalized effect algebras into complete effect algebras

被引:0
|
作者
Z. Riečanová
机构
[1] Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
来源
Soft Computing | 2006年 / 10卷
关键词
Mathematical Logic; Generalize Effect; Control Engineer; Computing Methodology; Effect Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized effect algebras as posets are unbounded versions of effect algebras having bounded effect-algebraic extensions. We show that when the MacNeille completion MC(P) of a generalized effect algebra P cannot be organized into a complete effect algebra by extending the operation ⊕ onto MC(P) then still P may be densely embedded into a complete effect algebra. Namely, we show these facts for Archimedean GMV-effect algebras and block-finite prelattice generalized effect algebras. Moreover, we show that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras.
引用
收藏
页码:476 / 482
页数:6
相关论文
共 50 条
  • [21] On Bilinear Forms from the Point of View of Generalized Effect Algebras
    Dvurecenskij, Anatolij
    Janda, Jiri
    FOUNDATIONS OF PHYSICS, 2013, 43 (09) : 1136 - 1152
  • [22] On Bilinear Forms from the Point of View of Generalized Effect Algebras
    Anatolij Dvurečenskij
    Jiří Janda
    Foundations of Physics, 2013, 43 : 1136 - 1152
  • [23] TOP ELEMENT PROBLEM AND MACNEILLE COMPLETIONS OF GENERALIZED EFFECT ALGEBRAS
    Riecanova, Z.
    Kalina, M.
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 74 (02) : 265 - 276
  • [24] Product Effect Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2002, 41 : 1827 - 1839
  • [25] Orthocomplete effect algebras
    Jenca, G
    Pulmannová, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2663 - 2671
  • [26] MEASURES ON EFFECT ALGEBRAS
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Moreno-Pulido, Soledad
    MATHEMATICA SLOVACA, 2019, 69 (01) : 159 - 170
  • [27] Hyper effect algebras
    Dvurecenskij, Anatolij
    Hycko, Marek
    FUZZY SETS AND SYSTEMS, 2017, 326 : 34 - 51
  • [28] Lexicographic effect algebras
    Anatolij Dvurečenskij
    Algebra universalis, 2016, 75 : 451 - 480
  • [29] Dynamic effect algebras
    Chajda, Ivan
    Kolarik, Miroslav
    MATHEMATICA SLOVACA, 2012, 62 (03) : 379 - 388
  • [30] ON TOPOLOGICAL EFFECT ALGEBRAS
    Rakhshani, M. R.
    Borzooei, R. A.
    Rezaei, G. R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 312 - 325