Embeddings of generalized effect algebras into complete effect algebras
被引:0
|
作者:
Z. Riečanová
论文数: 0引用数: 0
h-index: 0
机构:Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
Z. Riečanová
机构:
[1] Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
来源:
Soft Computing
|
2006年
/
10卷
关键词:
Mathematical Logic;
Generalize Effect;
Control Engineer;
Computing Methodology;
Effect Algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Generalized effect algebras as posets are unbounded versions of effect algebras having bounded effect-algebraic extensions. We show that when the MacNeille completion MC(P) of a generalized effect algebra P cannot be organized into a complete effect algebra by extending the operation ⊕ onto MC(P) then still P may be densely embedded into a complete effect algebra. Namely, we show these facts for Archimedean GMV-effect algebras and block-finite prelattice generalized effect algebras. Moreover, we show that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras.
机构:
Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Inst Informat & Math, SK-81219 Bratislava, SlovakiaSlovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Inst Informat & Math, SK-81219 Bratislava, Slovakia
Riecanova, Z.
Kalina, M.
论文数: 0引用数: 0
h-index: 0
机构:
Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, SK-81368 Bratislava, SlovakiaSlovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Inst Informat & Math, SK-81219 Bratislava, Slovakia