Embeddings of generalized effect algebras into complete effect algebras

被引:0
作者
Z. Riečanová
机构
[1] Slovak University of Technology,Department of Mathematics, Faculty of Electrical Engineering and Information Technology
来源
Soft Computing | 2006年 / 10卷
关键词
Mathematical Logic; Generalize Effect; Control Engineer; Computing Methodology; Effect Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Generalized effect algebras as posets are unbounded versions of effect algebras having bounded effect-algebraic extensions. We show that when the MacNeille completion MC(P) of a generalized effect algebra P cannot be organized into a complete effect algebra by extending the operation ⊕ onto MC(P) then still P may be densely embedded into a complete effect algebra. Namely, we show these facts for Archimedean GMV-effect algebras and block-finite prelattice generalized effect algebras. Moreover, we show that extendable commutative BCK-algebras directed upwards are equivalent to generalized MV-effect algebras.
引用
收藏
页码:476 / 482
页数:6
相关论文
共 23 条
[1]  
Cignoli R(1996)A Boolean product of MV-algebras J Math Anal Appl 199 637-653
[2]  
Torrens A(1994)Effect algebras and unsharp quantum logics Found Phys 24 1331-1352
[3]  
Foulis D(1996)Generalized difference posets and orthoalgebras Acta Math Univ Comenianae 65 247-279
[4]  
Bennett MK(1999)On sharp elements in lattice ordered effect algebras BUSEFAL 80 24-29
[5]  
Hedlíková J(1994)An axiomatization for abelian relative inverses Demonstratio Math 27 769-780
[6]  
Pulmannová S(1995)Compatibility in D-posets Internat J Theor Phys 34 1525-1531
[7]  
Jenča G(1997)Boolean D-posets Tatra Mt Math Publ 10 183-197
[8]  
Riečanová Z(1996)On order continuity of quantum structures and their homomorphism Demonstratio Math 29 433-443
[9]  
Kalmbach G(1997)On proper orthoalgebras, difference posets and abelian relative inverse semigroups Tatra Mt Math Publ 10 119-128
[10]  
Riečanová Z(1998)Central ideals of generalized effect algebras and generalized D-algebras BUSEFAL 76 66-71