Flow Compactifications of Nondiscrete Monoids, Idempotents and Hindman's Theorem

被引:0
作者
Richard N. Ball
James N. Hagler
机构
[1] University of Denver,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2003年 / 53卷
关键词
Flow; Stone-Čech compactification; Hindman's theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman's Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
引用
收藏
页码:319 / 342
页数:23
相关论文
共 6 条
  • [1] Blass A.(1993)Ultra_lters: where topological dynamics = algebra = combinatorics Topology Proceedings 18 33-56
  • [2] Comfort W.W.(1977)Ultrafilters—some old and some new results Bull. Amer. Math. Soc. 83 417-455
  • [3] Hindman N.(1974)Finite sums from sequences within cells of a partition of N. J. Combin. Theory 17 1-11
  • [4] Megrelishvili M.(1998)A Tychonoff G-space which has no compact G-extensions and G-linearizations Russian Math. Surveys 43 145-108
  • [5] Namakura K.(1952)On bicompact semgroups Math. J. 1 99-280
  • [6] de vries J.(1978)On the existence of G-compactifications Bull. Acad. Polonaise des Sciences 26 275-undefined