Rationality of the moduli spaces of plane curves of sufficiently large degree

被引:0
作者
Christian Böhning
Hans-Christian Graf von Bothmer
机构
[1] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Inventiones mathematicae | 2010年 / 179卷
关键词
Modulus Space; Vector Bundle; Algebraic Group; Interpolation Polynomial; Plane Curf;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the moduli space of plane curves of degree d is rational for all sufficiently large d.
引用
收藏
页码:159 / 173
页数:14
相关论文
共 21 条
  • [1] Artin M.(1972)Some elementary examples of unirational varieties which are not rational Proc. Lond. Math. Soc. 25 75-95
  • [2] Mumford D.(1985)Variétés stablement rationnelles et non-rationnelles Ann. Math. 121 283-318
  • [3] Beauville A.(1982)Invariants of cubic forms in four variables Vestnik Moscov. Univ. Ser. I Mat. Mekh. 2 42-49
  • [4] Colliot-Thélène J.-L.(1986)Stable rationality of quotient varieties by simply connected groups Mat. Sbornik 130 3-17
  • [5] Sansuc J.-J.(1985)Rationality of some quotient varieties Mat. Sbornik 126 584-589
  • [6] Swinnerton-Dyer S.P.(1972)The intermediate Jacobian of the cubic threefold Ann. Math. 95 281-356
  • [7] Beklemishev N.(1993)Polar covariants of plane cubics and quartics Adv. Math. 98 216-301
  • [8] Bogomolov F.(1984)Rationality of the moduli spaces of hyperelliptic curves Izv. Akad. Nauk SSSR Ser. Mat. 48 705-710
  • [9] Bogomolov F.(1992)On the birational geometry of the space of ternary quartics Adv. Sov. Math. 8 95-103
  • [10] Katsylo P.(1996)Rationality of the moduli variety of curves of genus 3 Comment. Math. Helvetici 71 507-524