Combining Gradient Optimization and Machine Learning Methods for Inverse Problems in Layered Heterogeneous Media

被引:0
作者
Stankevich, A. S. [1 ]
机构
[1] Moscow Inst Phys & Technol, Moscow 141701, Russia
关键词
gradient optimization; machine learning; inverse problems; layered heterogeneous media; acoustics;
D O I
10.1134/S1995080223010377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers the combination of classical gradient optimization methods and convolutional neural networks for solving the inverse problem of obtaining the elastic properties of layered heterogeneous media. The convolutional neural network is trained using synthetically generated numerical data. The network is used to provide an initial approximation for the further work of the gradient optimization method. The paper considers different approaches to neural network training and compares the performance of gradient optimization when starting from their predictions.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 21 条
[1]  
BOURGET M., 1990, EAEG WORKSH PRACT AS, DOI 10.3997/2214-4609.201411190
[2]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[3]   IDENTIFICATION OF NONLINEARITY OF A QUASILINEAR PARABOLIC EQUATION [J].
CHAVENT, G ;
LEMONNIER, P .
APPLIED MATHEMATICS AND OPTIMIZATION, 1974, 1 (02) :121-162
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[6]  
github, Segmentation Models Pytorch
[7]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, DOI 10.48550/ARXIV.1512.03385]
[8]  
Li DZ, 2020, Arxiv, DOI arXiv:1912.07552
[9]  
Li Z., 2020, arXiv
[10]  
Paszke A, 2019, ADV NEUR IN, V32