To determine the performance of metakaolin-based fiber-reinforced geopolymer concrete with recycled aggregates

被引:48
作者
Zaid, Osama [1 ]
Martinez-Garcia, Rebeca [2 ]
Abadel, Aref A. [3 ]
Fraile-Fernandez, Fernando J. [2 ]
Alshaikh, Ibrahim M. H. [4 ]
Palencia-Coto, Covadonga [5 ]
机构
[1] Natl Univ Sci & Technol, Mil Coll Engn, Dept Struct Engn, Islamabad 44000, Pakistan
[2] Univ Leon, Dept Min Technol Topog & Struct, Campus Vegazana S-N, E-24071 Leon, Spain
[3] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh 11421, Saudi Arabia
[4] Univ Sci & Technol, Dept Civil Engn, Sanaa, Yemen
[5] Univ Leon, Dept Appl Phys, Campus Vegazana S-N, Leon 24071, Spain
关键词
Geopolymer concrete; Metakaolin; Sustainability; Steel fibers; Recycled aggregates; FLY-ASH; MECHANICAL-PROPERTIES; STRENGTH; STEEL; MICROSTRUCTURE; SHRINKAGE; BEHAVIOR; MORTAR; PERMEABILITY; DURABILITY;
D O I
10.1007/s43452-022-00436-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the present research, geopolymer concrete for construction applications comprising metakaolin was evaluated by partial addition of recycled coarse aggregates and steel fibers to develop eco-friendly cementitious composites. Mechanical and durability characteristics of geopolymer composites were then assessed such as compression, splitting tensile and flexural strength, water absorption, and drying shrinkage. It was observed that with the inclusion of steel fibers, no significant change in compressive strength occurred. Mixtures were prepared with a binder amount of 440 kg/m(3) in total. The recycled coarse aggregates were substituted with natural coarse aggregates at a rate of 15, 25, and 35% by their weight. The inclusion of steel fibers in the mixes was 1.0, 2.0, and 3.0% of metakaolin content. Because of the addition of steel fibers, the split tensile strength, flexural strength, and drying shrinkage were improved significantly. The load-displacement graph showed that the fracture toughness of geopolymer composites was enhanced due to the inclusion of steel fibers which leads to maximum loads capacity. From the stress-strain curve, it was observed that the geopolymer paste and the steel fibers had a strong bond, which will help in restraining the propagation of cracks. From XRD analysis, it was shown that a mix having 25% recycled coarse aggregates and 3.0% steel fibers in metakaolin-based geopolymer concrete results in environment-friendly composite with suitable strength and durability that will help in bringing sustainability to the construction industry.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Sustainable use of recycled fine aggregates in steel fiber-reinforced concrete: Fresh, flexural, mechanical and durability characteristics
    Benli, Ahmet
    Bayraktar, Oguzhan Yavuz
    Koksal, Fuat
    Kaplan, Gokhan
    JOURNAL OF BUILDING ENGINEERING, 2024, 97
  • [42] Influence of reclaimed asphalt pavement aggregate on the performance of metakaolin-based geopolymer concrete at ambient and elevated temperatures
    Albidah, Abdulrahman S.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 402
  • [43] The use of machine learning techniques to investigate the properties of metakaolin-based geopolymer concrete
    Afzali, Seyed Ali Eftekhar
    Shayanfar, Mohsen Ali
    Ghanooni-Bagha, Mohammad
    Golafshani, Emad
    Ngo, Tuan
    JOURNAL OF CLEANER PRODUCTION, 2024, 446
  • [44] Mechanical Properties and Durability of Polypropylene and Steel Fiber-Reinforced Recycled Aggregates Concrete (FRRAC): A Review
    Zhang, Peng
    Yang, Yonghui
    Wang, Juan
    Hu, Shaowei
    Jiao, Meiju
    Ling, Yifeng
    SUSTAINABILITY, 2020, 12 (22) : 1 - 28
  • [45] Development of metakaolin based high strength recycled aggregate geopolymer concrete
    Gopalakrishna, Banoth
    Pasla, Dinakar
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 391
  • [46] Mechanical characterization of fiber-reinforced rubberized recycled concrete
    Shahjalal, Md.
    Islam, Kamrul
    Ahmed, Tasnia
    Ahsan, Raquib
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 412
  • [47] High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar
    Zhang, Peng
    Han, Xu
    Hu, Shaowei
    Wang, Juan
    Wang, Tingya
    COMPOSITES PART B-ENGINEERING, 2022, 244
  • [48] Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recycled fireclay brick aggregates
    Li, Yin
    Huang, Liang
    Gao, Chang
    Mao, Zhijie
    Qin, Mingzhu
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 392
  • [49] A Detailed Investigation of the Bond Performance of Basalt Fiber-Reinforced Polymer Bars in Geopolymer Concrete
    Mohmmad, Sarwar Hasan
    Gulsan, Mehmet Eren
    Cevik, Abdulkadir
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2022, 66 (02): : 471 - 490
  • [50] Study on the mechanical properties and microstructure of chitosan reinforced metakaolin-based geopolymer
    Qin, Yangxin
    Chen, Xiao
    Li, Beixing
    Guo, Yuguang
    Niu, Zidong
    Xia, Tianhao
    Meng, Weiwei
    Zhou, Mingkai
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 271 (271)