The Hilbert Transform for Dunkl Differential Operators Associated to the Reflection Group ℤ2

被引:0
作者
I. A. López P
机构
[1] Universidad Simón Bolivar,Departamento de Matemáticas Puras y Aplicadas
来源
Analysis Mathematica | 2023年 / 49卷
关键词
Dunkl operator; Dunkl transform; Cauchy—Riemann equations; conjugate funcion; Hilbert transform; truncated Hilbert transform; 44A15; 42A59; 42A38; 33C80;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to introduce the Dunkl—Hilbert transform Hk, with k ≥ 0, induced by the Dunkl differential operator and associated with the reflection group ℤ2. For this end, we establish that the Dunkl—Poisson kernel and the conjugate Dunkl—Poisson kernel satisfy the Cauchy—Riemann equations in the Dunkl context. We prove the continuity of Hk on Lp(wk) for 1 < p < ∞, where wk(x) = ∣x∣2k. Finally, we introduce the maximal Hilbert operator H*k and establish an analogue of Cotlar’s theorem.
引用
收藏
页码:207 / 224
页数:17
相关论文
共 10 条
[1]  
Amri B(2010)Linear and bilinear multiplier operators for the Dunkl transform Mediterr. J. Math. 7 503-521
[2]  
Gasmi A(1955)A unified theory of Hilbert transform and ergodic theorems Rev Mat. Cuyana 1 105-167
[3]  
Sifi M(1927)Sur les functions conjuguées Math. Z. 27 218-244
[4]  
Cotlar M(2005)Convolution operator and maximal function for the Dunkl transform J. Anal. Math. 97 25-55
[5]  
Riesz M(2007)Riesz transform and Riesz potentials for Dunkl transform J. Comput. Appl. Math. 199 181-195
[6]  
Thangavelu S(2002)Paley—Wiener theorems for the Dunkl transform and Dunkl translation operators Integral Transforms Spec. Funct. 13 17-38
[7]  
Xu Y(undefined)undefined undefined undefined undefined-undefined
[8]  
Thangavelu S(undefined)undefined undefined undefined undefined-undefined
[9]  
Xu Y(undefined)undefined undefined undefined undefined-undefined
[10]  
Triméche K(undefined)undefined undefined undefined undefined-undefined