On the multiplication operator by an independent variable in matrix Sobolev spaces

被引:0
作者
Sergey M. Zagorodnyuk
机构
[1] V. N. Karazin Kharkiv National University,Department of Higher Mathematics and Informatics, School of Mathematics and Computer Sciences
来源
Advances in Operator Theory | 2022年 / 7卷
关键词
Multiplication operator; Sobolev space; A symmetrizable operator; Sobolev orthogonal polynomials; 47B37; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the operator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} of multiplication by an independent variable in a matrix Sobolev space W2(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^2(M)$$\end{document}. In the cases of finite measures on [a, b] with (2×2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2\times 2)$$\end{document} and (3×3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3\times 3)$$\end{document} real continuous matrix weights of full rank it is shown that the operator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}$$\end{document} is symmetrizable. Namely, there exist two symmetric operators B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}$$\end{document} and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} in a larger space such that Af=CB-1f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A} f = \mathcal {C} \mathcal {B}^{-1} f$$\end{document}, f∈D(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in D(\mathcal {A})$$\end{document}. As a corollary, we obtain some new orthogonality conditions for the associated Sobolev orthogonal polynomials. These conditions involve two symmetric operators in an indefinite metric space.
引用
收藏
相关论文
共 11 条
  • [1] Kim HK(2014)Diagonalizability and symmetrizability of Sobolev-type bilinear forms: a combinatorial approach Linear Algebra Appl. 460 111-124
  • [2] Kwon KH(2009)Ghost matrices and a characterization of symmetric Sobolev bilinear forms Linear Algebra Appl. 431 104-119
  • [3] Littlejohn LL(2015)On Sobolev orthogonal polynomials Expo. Math. 33 308-352
  • [4] Yoon GJ(1964)The square-integrability of matrix-valued functions with respect to a non-negative Hermitian measure Duke Math. J. 31 291-298
  • [5] Kwon KH(2021)On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials J. Differ. Equ. Appl. 27 261-283
  • [6] Littlejohn LL(undefined)undefined undefined undefined undefined-undefined
  • [7] Yoon GJ(undefined)undefined undefined undefined undefined-undefined
  • [8] Marcellán F(undefined)undefined undefined undefined undefined-undefined
  • [9] Xu Y(undefined)undefined undefined undefined undefined-undefined
  • [10] Rosenberg M(undefined)undefined undefined undefined undefined-undefined