Multiplicity of Solutions for an Elliptic Kirchhoff Equation

被引:0
作者
David Arcoya
José Carmona
Pedro J. Martínez-Aparicio
机构
[1] Universidad de Granada,Departamento de Análisis Matemático, Campus Fuentenueva S/N
[2] Universidad de Almería Ctra. Sacramento s/n,Departamento de Matemáticas
来源
Milan Journal of Mathematics | 2022年 / 90卷
关键词
Elliptic Kirchhoff equation; Continua of solutions; Multiplicity of solutions; Primary 35J25; 35J60; Secondary 58E07; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the existence of positive solution to the Kirchhoff elliptic problem -1+γG′‖∇u‖L2(Ω)2Δu=λf(u)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\left( 1+\gamma G'\left( \Vert \nabla u\Vert ^2_{L^2(\Omega )}\right) \right) \Delta u = \lambda f(u) &{} \text{ in } \; \Omega ,\\ u = 0 &{} \text{ on } \; \partial \Omega ,\\ \end{array}\right. } \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open, bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} (N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}), f is a locally Lipschitz continuous real function, f(0)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)\ge 0$$\end{document}, G′∈C(R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\in C(\mathbb {R}^+)$$\end{document} and G′≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'\ge 0$$\end{document}. We prove the existence of at least two solutions with L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (\Omega )$$\end{document} norm between two consecutive zeroes of f for large λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}.
引用
收藏
页码:679 / 689
页数:10
相关论文
共 14 条
  • [1] Ambrosetti A(1980)Positive solutions of asymptotically linear elliptic eigenvalue problems J. Math. Anal. Appl. 73 411-422
  • [2] Hess P(2016)Semilinear elliptic equations and nonlinearities with zeros Nonlinear Anal. 134 117-126
  • [3] Barrios B(1979)On the existence of positive solutions for a class of semilinear elliptic boundary value problems SIAM J. Math. Anal. 10 875-883
  • [4] García-Melián J(1987)On positive solutions of semilinear elliptic equations Proc. Amer. Math. Soc. 101 445-452
  • [5] Iturriaga L(1981)On multiple positive solutions of nonlinear elliptic eigenvalue problems Comm. Partial Differen. Equ. 6 951-961
  • [6] Brown KJ(2015)Multiplicity of solutions for some semilinear problems involving nonlinearities with zeros Israel J. Math. 210 233-244
  • [7] Budin H(2002)Positive solutions of a class of nonlinear elliptic eigenvalue problems Math. Z. 242 663-686
  • [8] Dancer EN(1975)A note on topological degree for potential operators J. Math. Anal. Appl. 51 483-492
  • [9] Schmitt K(undefined)undefined undefined undefined undefined-undefined
  • [10] Hess P(undefined)undefined undefined undefined undefined-undefined