On periodic solutions of linear differential equations with pulsed influence

被引:0
作者
V. G. Samoilenko
K. K. Elgondyev
机构
[1] Ukrainian Academy of Sciences,Institute of Mathematics
[2] Kara-Kalpak University,undefined
关键词
Periodic Solution; Periodic Point; Nonlinear Differential Equation; Linear Differential Equation; Ukrainian Academy;
D O I
10.1007/BF02486623
中图分类号
学科分类号
摘要
We study periodic solutions of ordinary linear second-order differential equations with publsed influence at fixed and nonfixed times.
引用
收藏
页码:156 / 164
页数:8
相关论文
共 13 条
[1]  
Gorbunov V. K.(1975)Processes with controlled discontinuities of phase trajectories and simulation of industry with circulation of funds Izv. Akad. Nauk SSR, Ser. Tekhn. Kiebernet. 6 55-61
[2]  
Nurakhanova G. U.(1974)System analysis of some medical and biological problems related to the control of medical treatment Avtomat. Telemekh. 2 54-62
[3]  
Petrovskii A. M.(1971)Averaging method in systems with shocks Math. Phys. 9 101-117
[4]  
Samoilenko A. M.(1977)Justification of the method of averaging for second-order equations with pulsed influence Ukr. Mat. Zh. 29 750-762
[5]  
Mitropol’skii Yu. A.(1985)Averaging method for systems with pulsed influence Ukr. Mat. Zh. 37 56-64
[6]  
Samoilenko A. M.(1991)Periodic and almost periodic solutions of linear homogeneous diferential equations with pulsed influence Math. Fiz. Nelin. Mekh. 15 13-20
[7]  
Perestyuk N. A.(1964)Coexistence of cycles for a continuous mapping of the line onto itself Ukr. Mat. Zh. 16 61-71
[8]  
Mitropol’skii Yu. A.(undefined)undefined undefined undefined undefined-undefined
[9]  
Samoilenko A. M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Perestyuk N. A.(undefined)undefined undefined undefined undefined-undefined