Periodic orbits around brane-world black holes

被引:0
作者
Xue-Mei Deng
机构
[1] Chinese Academy of Sciences,Purple Mountain Observatory
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A black hole on a three-brane in five-dimensional spacetime was predicted by Dadhich, Maartens, Papadopoulos and Rezania (DMPR). In order to reveal some signatures for observations, we investigate a timelike particle’s motion around the DMPR brane-world black holes. We find that, both in the innermost stable circular orbits (ISCO) and the marginally bound orbits (MBO), the particle’s angular momentum and its radius decrease with the increase of Q, where Q is a tidal charge parameter and may be negative and positive in the brane-world black holes. From these results, the corresponding periodic orbits with different energy levels are analyzed numerically by employing a taxonomy, which is related to the adiabatic inspiral regime in the gravitational wave radiation. It clearly shows that a rational number defined by the taxonomy increases with the particle’s energy. In addition, periodic orbits with Q<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q<0$$\end{document} in the DMPR brane-world black holes have higher energy in comparison to the ones with Q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q>0$$\end{document} and in the Schwarzschild black holes. Our results might provide hints for distinguishing the DMPR brane-world black holes from other black holes by the timelike particle’s periodic orbits in the future.
引用
收藏
相关论文
共 106 条
[1]  
Abbas G(2014)undefined Astrophys. Space Sci. 352 769-479
[2]  
Sabiullah U(1974)undefined Lett. Nuovo Cimento 11 467-153
[3]  
Bekenstein JD(2008)undefined Phys. Rev. D 77 026004-undefined
[4]  
Buonanno A(2019)undefined Phys. Rev. Lett. 123 161101-undefined
[5]  
Kidder LE(2009)undefined Class. Quantum Gravity 26 235010-undefined
[6]  
Lehner L(2000)undefined Phys. Rev. D 62 124022-undefined
[7]  
Hughes SA(2002)undefined Phys. Rev. D 66 044002-undefined
[8]  
Apte A(2019)undefined Phys. Rev. D 100 064001-undefined
[9]  
Khanna G(2008)undefined Phys. Rev. D 77 103005-undefined
[10]  
Lim H(2019)undefined Class. Quantum Gravity 36 045009-undefined