A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation

被引:0
|
作者
Hong-Kui Pang
Hai-Wei Sun
机构
[1] Jiangsu Normal University,School of Mathematics and Statistics
[2] University of Macau,Department of Mathematics
来源
Journal of Scientific Computing | 2021年 / 87卷
关键词
Fractional derivative of variable-order; Finite difference method; Polynomial interpolation; Low-rank approximation; Stability and convergence; 65M06; 65D05; 65M12; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a fast algorithm for the variable-order (VO) space-fractional advection-diffusion equations with nonlinear source terms on a finite domain. Due to the impact of the space-dependent the VO, the resulting coefficient matrices arising from the finite difference discretization of the fractional advection-diffusion equation are dense without Toeplitz-like structure. By the properties of the elements of coefficient matrices, we show that the off-diagonal blocks can be approximated by low-rank matrices. Then we present a fast algorithm based on the polynomial interpolation to approximate the coefficient matrices. The approximation can be constructed in O(kN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(kN)$$\end{document} operations and requires O(kN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(kN)$$\end{document} storage with N and k being the number of unknowns and the approximants, respectively. Moreover, the matrix-vector multiplication can be implemented in O(kNlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}} (kN\log N)$$\end{document} complexity, which leads to a fast iterative solver for the resulting linear systems. The stability and convergence of the new scheme are also studied. Numerical tests are carried out to exemplify the accuracy and efficiency of the proposed method.
引用
收藏
相关论文
共 50 条
  • [1] A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
    Pang, Hong-Kui
    Sun, Hai-Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [2] Meshfree methods for the variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Yang, Jiye
    Liu, Zhiyong
    Xu, Qiuyan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 : 489 - 514
  • [3] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143
  • [4] A characteristic difference method for the variable-order fractional advection-diffusion equation
    Shen S.
    Liu F.
    Anh V.
    Turner I.
    Chen J.
    Journal of Applied Mathematics and Computing, 2013, 42 (1-2) : 371 - 386
  • [5] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [6] Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order
    Qu, Hai-Dong
    Liu, Xuan
    Lu, Xin
    Rahman, Mati Ur
    She, Zi-Hang
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [7] A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation
    Tayebi, A.
    Shekari, Y.
    Heydari, M. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 340 : 655 - 669
  • [8] Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients
    Hosseininia, M.
    Heydari, M. H.
    Avazzadeh, Z.
    Ghaini, F. M. Maalek
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) : 793 - 802
  • [9] Collocation method with Lagrange polynomials for variable-order time-fractional advection-diffusion problems
    Kumar, Saurabh
    Gupta, Vikas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 1113 - 1131
  • [10] A Novel Algorithm for Time Fractional Advection-Diffusion Equation
    Zhang, Ping
    Zhang, Yingchao
    Jia, Yuntao
    Lin, Yingzhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,