共 50 条
A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
被引:0
|作者:
Hong-Kui Pang
Hai-Wei Sun
机构:
[1] Jiangsu Normal University,School of Mathematics and Statistics
[2] University of Macau,Department of Mathematics
来源:
Journal of Scientific Computing
|
2021年
/
87卷
关键词:
Fractional derivative of variable-order;
Finite difference method;
Polynomial interpolation;
Low-rank approximation;
Stability and convergence;
65M06;
65D05;
65M12;
65F10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We propose a fast algorithm for the variable-order (VO) space-fractional advection-diffusion equations with nonlinear source terms on a finite domain. Due to the impact of the space-dependent the VO, the resulting coefficient matrices arising from the finite difference discretization of the fractional advection-diffusion equation are dense without Toeplitz-like structure. By the properties of the elements of coefficient matrices, we show that the off-diagonal blocks can be approximated by low-rank matrices. Then we present a fast algorithm based on the polynomial interpolation to approximate the coefficient matrices. The approximation can be constructed in O(kN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {O}}(kN)$$\end{document} operations and requires O(kN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {O}}(kN)$$\end{document} storage with N and k being the number of unknowns and the approximants, respectively. Moreover, the matrix-vector multiplication can be implemented in O(kNlogN)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {O}} (kN\log N)$$\end{document} complexity, which leads to a fast iterative solver for the resulting linear systems. The stability and convergence of the new scheme are also studied. Numerical tests are carried out to exemplify the accuracy and efficiency of the proposed method.
引用
收藏
相关论文