Geometry of Planes over Nonassociative Algebras

被引:0
作者
B. A. Rosenfeld
机构
[1] Pennsylvania State University,Department of Mathematics
来源
Acta Applicandae Mathematica | 1998年 / 50卷
关键词
octaves; octave planes; exceptional Lie groups;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the geometric interpretation of the exceptional Lie groups F4, E6, E7, and E8 is given. These groups are groups of motions of elliptic hyperbolic planes over nonassociative algebras of octaves and split octaves and their tensor products with algebras of usual and split complex numbers, quaternions and octaves. The explicit expressions of motions of these planes and their figures of symmetry are presented.
引用
收藏
页码:103 / 110
页数:7
相关论文
共 9 条
  • [1] Rumyantseva L. V.(1963)Quaternion symplectic geometry Trudy Sem. Vektor Tenzor Anal. 12 287-314
  • [2] Cartan É.(1914)Les groupes réels simples finis et continus Ann, Écol. Norm. Sup. 31 263-355
  • [3] Borel A.(1950)Le plan projective des octaves et les sphère comme les espaces homogènes C.R. Acad. Sci. Paris 230 1378-1380
  • [4] Freudenthal H.(1985)Oktaven, Ausnahmegruppen und Oktavengeometrie, Utrecht Univ., 1951 Geom. Dedicata 19 1-63
  • [5] Moufang R.(1933)Alternativkörper und der Satz vom vollständigen Vierseit (D Abh. Math. Sem. Univ. Hamburg 9 207-222
  • [6] Tits J.(1956)) Bull. Soc. Math. Belg. 8 38-81
  • [7] Rosenfeld B. A.(1954)Les groupes de Lie exceptionels et leur interprÉtation gÉomÉtrique Dokl. Akad. Nauk Azerb. SSR 10 829-833
  • [8] Rosenfeld B. A.(1956)Compact simple group E Dokl. Akad. Nauk SSSR 106 600-603
  • [9] Zablotskikh N. M.(1969) as the motion group of the non-Euclidean complex octave plane Uchen. Zap. Mosk. Obl. Ped. Inst. 253 62-76