Improved splitting preconditioner for double saddle point problems arising from liquid crystal director modeling

被引:0
作者
Bi-Cong Ren
Fang Chen
Xiao-Liang Wang
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] Beijing Institute of Technology,School of Aerospace Engineering
来源
Numerical Algorithms | 2022年 / 91卷
关键词
Double saddle point problem; Preconditioning; Matrix splitting; 65F10; 65F08;
D O I
暂无
中图分类号
学科分类号
摘要
To improve the performance of alternating positive semidefinite splitting (APSS) preconditioner, we present an improved APSS (IAPSS) preconditioner for the double saddle point problem arising from liquid crystal director modeling. Theoretical analysis shows that all eigenvalues of the IAPSS-preconditioned matrix are real and located in the interval (0, 2). Numerical examples also show the efficiency of the proposed preconditioner.
引用
收藏
页码:1363 / 1379
页数:16
相关论文
共 65 条
  • [1] Bai Z-Z(2000)Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems Appl. Math. Comput. 109 273-285
  • [2] Bai Z-Z(2009)Optimal parameters in the HSS-like methods for saddle-point problems Numer. Linear Algebra Appl. 16 447-479
  • [3] Bai Z-Z(2013)Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks J. Comput. Appl. Math. 237 295-306
  • [4] Bai Z-Z(2015)Motivations and realizations of Krylov subspace methods for large sparse linear systems J. Comput. Appl. Math. 283 71-78
  • [5] Bai Z-Z(2003)Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems SIAM J. Matrix Anal. Appl. 24 603-626
  • [6] Golub GH(2005)Block triangular and skew-Hermitian splitting methods for positive-definite linear systems SIAM J. Sci. Comput. 26 844-863
  • [7] Ng MK(2009)Constraint preconditioners for symmetric indefinite matrices SIAM J. Matrix Anal. Appl. 31 410-433
  • [8] Bai Z-Z(2005)On generalized successive overrelaxation methods for augmented linear systems Numer. Math. 102 1-38
  • [9] Golub GH(2008)On parameterized inexact Uzawa methods for generalized saddle point problems Linear Algebra Appl. 428 2900-2932
  • [10] Lu L-Z(2018)Iterative methods for double saddle point systems SIAM J. Matrix Anal. Appl. 39 902-921