Schwarz lemma involving the boundary fixed point

被引:0
作者
Xu Q. [1 ]
Tang Y. [1 ]
Yang T. [1 ]
Srivastava H.M. [2 ,3 ]
机构
[1] College of Mathematics and Information Science, JiangXi Normal University, NanChang
[2] Department of Mathematics and Statistics, University of Victoria, Victoria, V8W 3P4, BC
[3] China Medical University, Taichung
基金
中国国家自然科学基金;
关键词
boundary Schwarz lemma; fixed point; zero of order;
D O I
10.1186/s13663-016-0574-8
中图分类号
学科分类号
摘要
Let f be an holomorphic function which maps the unit disk into itself. In this paper, consider the zero of order k (i.e., f(z) − f(0) (or f(z)) has a zero of order k at z= 0), we obtain the sharp estimates of the classical boundary Schwarz lemma involving the boundary fixed point. The results presented here would generalize the corresponding result obtained by Frolova et al. (Complex Anal. Oper. Theory 8:1129-1149, 2004). © 2016, Xu et al.
引用
收藏
相关论文
共 19 条
[1]  
Frolova A., Levenshtein M., Shoikhet D., Vasil'ev A., Boundary distortion estimates for holomorphic maps, Complex Anal. Oper. Theory, 8, pp. 1129-1149, (2004)
[2]  
Abate M., Iteration Theory of Holomorphic Maps on Taut Manifolds, (1989)
[3]  
Elin M., Jacobzon F., Levenshtein M., Shoikhet D., The Schwarz lemma: rigidity and dynamics, Harmonic and Complex Analysis and Its Applications, pp. 135-230, (2014)
[4]  
Dai S.Y., Chen H.H., Pan Y.F., The Schwarz-Pick lemma of high order in several variables, Mich. Math. J., 59, 3, pp. 517-533, (2010)
[5]  
Ruscheweyh S., Two remarks on bounded analytic functions, Serdica, 11, pp. 200-202, (1985)
[6]  
Liu Y., Chen Z.H., Schwarz-Pick estimates for holomorphic mappings from the polydisk to the unit ball, J. Math. Anal. Appl., 376, pp. 123-125, (2011)
[7]  
Anderson J.M., Vasil'ev A., Lower Schwarz-Pick estimates and angular derivatives, Ann. Acad. Sci. Fenn., Math., 33, pp. 101-110, (2008)
[8]  
Cowen C.C., Pommerenke C., Inequalities for the angular derivative of an analytic function in the unit disk, J. Lond. Math. Soc., 26, 2, pp. 271-289, (1982)
[9]  
Bolotnikov V., Elin M., Shoikhet D., Inequalities for angular derivatives and boundary interpolation, Anal. Math. Phys., 3, 1, pp. 63-96, (2013)
[10]  
Elin M., Shoikhet D., Tarkhanov N., Separation of boundary singularities for holomorphic generators, Ann. Mat. Pura Appl., 190, pp. 595-618, (2011)