Genetic diversity and population genetic structure analysis of Apis mellifera subspecies in Algeria and Europe based on complementary sex determiner (CSD) gene

被引:0
作者
Riad FRIDI
Nacera TABET AOUL
Guillaume CATAYS
Benjamin BASSO
Kaspar BIENEFELD
Aleš GREGORC
Alain VIGNAL
Kamila CANALE-TABET
机构
[1] Sciences and Technology University of Oran Mohamed Boudiaf,Molecular and Cellular Genetics Laboratory, Department of Genetics Applied, Faculty of SNV
[2] University of Oran,Department of Biotechnology, Faculty of SNV
[3] INRAE Occitanie-Toulouse: Institut National de Recherche pour l’Agriculture l’Alimentation et l’Environnement Centre Occitanie,Agricultural Institute of Slovenia, Ljubljana, Slovenia and University of Maribor
[4] Institut de l’abeille (ITSAP),undefined
[5] UMT PrADE,undefined
[6] INRA,undefined
[7] UR 406 Abeilles et Environment,undefined
[8] UMT PrADE,undefined
[9] Institut for Bee Research Hohen Neuendorf,undefined
[10] Faculty of Agriculture and Life Sciences,undefined
来源
Apidologie | 2022年 / 53卷
关键词
complementary sex determiner; polymorphism; genetic diversity;
D O I
暂无
中图分类号
学科分类号
摘要
In honeybees, the mechanism of sex determination depends on genetic variation at the complementary sex determiner (CSD) locus, which has a large allelic diversity. In this study, we examined the population genetic structure and genetic diversity within the highly variable region (HVR) of CSD in five Apis mellifera subspecies, in addition to Buckfast and unknown mixed ancestry bees. We sequenced CSD in 329 drones, 146 from Algeria (A. m. intermissa and A. m. sahariensis subspecies) and 183 from Europe (A. m. ligustica, A. m. carnica, A. m. mellifera subspecies, Buckfast samples, and individuals of unknown mixed ancestry). A total of 119 nucleotide haplotypes were detected. These corresponded to 119 protein haplotypes, of which 81 were new. The analysis of these haplotypes showed that HVR diversity levels were comparable with those in other populations of honeybee worldwide. Paradoxically, this high level of diversity at the locus did not allow for a separation of the samples according to their subspecies origin, which suggested either an evolutionary convergence or a conservation of alleles across subspecies, and an absence of genetic drift. Our results can be used to provide more information about the CSD diversity to include in breeding programs of honeybee populations.
引用
收藏
相关论文
共 50 条
  • [31] Genetic Diversity and Population Structure Analysis in Avocado (Persea americana) Accessions of India
    Muralidhara, B. M.
    Sakthivel, T.
    Reddy, D. C. Lakshmana
    Karunakaran, G.
    Venkatravanappa, V.
    Savadi, Siddanna
    Vaka, Divya Vani
    Naresh, Ponnam
    Shivashankara, K. S.
    Venugopalan, R.
    Honnabyraiah, M. K.
    [J]. AGRICULTURAL RESEARCH, 2024,
  • [32] Microsatellite-Based Genetic Diversity, Population Structure and Bottleneck Analysis in Peanut: Conservation and Utilization Implications
    Sangh, Chandramohan
    Pandya, Janki BharatBhai
    Zarna, Vora
    Radhakrishnan, T.
    Bera, S. K.
    [J]. PLANT MOLECULAR BIOLOGY REPORTER, 2024, : 521 - 535
  • [33] Genetic diversity and population structure analysis of Capsicum germplasm accessions
    GU Xiao-zhen
    CAO Ya-cong
    ZHANG Zheng-hai
    ZHANG Bao-xi
    ZHAO Hong
    ZHANG Xiao-min
    WANG Hai-ping
    LI Xi-xiang
    WANG Li-hao
    [J]. JournalofIntegrativeAgriculture, 2019, 18 (06) : 1312 - 1320
  • [34] Genetic Diversity and Population Structure Analysis in Upland Cotton Germplasm
    Ali, Imtiaz
    Khan, Naqib Ullah
    Gul, Samrin
    Khan, Shahid Ullah
    Bibi, Zarina
    Aslam, Kashif
    Shabir, Ghulam
    Haq, Hafiz Abdul
    Khan, Sher Aslam
    Hussain, Ijaz
    Ahmed, Sheraz
    Din, Ajmalud
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2019, 22 (04) : 669 - 676
  • [35] Diversity and population structure of a dominant deciduous tree based on morphological and genetic data
    Zhang, Qin-di
    Jia, Rui-Zhi
    Meng, Chao
    Ti, Chao-Wen
    Wang, Yi-Ling
    [J]. AOB PLANTS, 2015, 7
  • [36] Genetic diversity and population structure analysis of Capsicum germplasm accessions
    Gu Xiao-zhen
    Cao Ya-cong
    Zhang Zheng-hai
    Zhang Bao-xi
    Zhao Hong
    Zhang Xiao-Min
    Wang Hai-ping
    Li Xi-xiang
    Wang Li-hao
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2019, 18 (06) : 1312 - 1320
  • [37] Analysis of genetic diversity and population structure in accessions of the genus Melilotus
    Wu, Fan
    Zhang, Daiyu
    Ma, Jinxing
    Luo, Kai
    Di, Hongyan
    Liu, Zhipeng
    Zhang, Jiyu
    Wang, Yanrong
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2016, 85 : 84 - 92
  • [38] Genetic diversity and population structure analyses of Morinda tomentosa Heyne, with neutral and gene based markers
    Arya, Lalit
    Narayanan, Ramya Kossery
    Verma, Manjusha
    Singh, A. K.
    Gupta, Veena
    [J]. GENETIC RESOURCES AND CROP EVOLUTION, 2014, 61 (08) : 1469 - 1479
  • [39] Genetic diversity and population structure analyses of Morinda tomentosa Heyne, with neutral and gene based markers
    Lalit Arya
    Ramya Kossery Narayanan
    Manjusha Verma
    A. K. Singh
    Veena Gupta
    [J]. Genetic Resources and Crop Evolution, 2014, 61 : 1469 - 1479
  • [40] Population genetic structure and molecular diversity of Leucinodes orbonalis based on mitochondrial COI gene sequences
    Palraju, Murali
    Paulchamy, Ramaraj
    Sundaram, Janarthanan
    [J]. MITOCHONDRIAL DNA PART A, 2018, 29 (08) : 1231 - 1239