Trace inequalities for Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras

被引:0
作者
Airat Bikchentaev
机构
[1] Kazan Federal University,
关键词
Hilbert space; Polar decomposition; von Neumann algebra; -algebra; Weight; trace; 46L05; 46L30; 47C15;
D O I
10.1007/s11117-021-00852-3
中图分类号
学科分类号
摘要
Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras are unital and satisfy polar decomposition. We proved that if a unital C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} satisfies polar decomposition and admits “good” faithful tracial states then A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra. Via polar decomposition we characterized tracial states among all states on a Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra. We presented the triangle inequality for Hermitian elements and traces on Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra. For a block projection operator and a trace on a Rickart C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra we proved a new inequality. As a corollary, we obtain a sharp estimate for a trace of the commutator of any Hermitian element and a projection. Also we give a characterization of traces in a wide class of weights on a von Neumann algebra.
引用
收藏
页码:1943 / 1957
页数:14
相关论文
共 62 条
[1]  
Ara P(1989)Left and right projections are equivalent in Rickart J. Algebra 120 433-448
[2]  
Ara P(1993)-algebras Math. Nachr. 164 259-270
[3]  
Goldstein D(1995)A solution of the matrix problem for Rickart Arch. Math. (Basel) 65 505-510
[4]  
Ara P(2016)-algebras Uzbek. Mat. Zh. 1 13-33
[5]  
Goldstein D(2019)Rickart J. Math. Sci. 13 27-38
[6]  
Ayupov ShA(1998)-algebras are Math. Notes 64 159-163
[7]  
Arzikulov FN(2007)-normal Linear Algebra Appl. 422 274-278
[8]  
Ayupov ShA(2010)Jordan counterparts of Rickart and Baer Sib. Math. J. 51 971-977
[9]  
Arzikulov FN(2011)-algebras Math. Notes 89 461-471
[10]  
Bikchentaev AM(2011)Jordan counterparts of Rickart and Baer Lobachevskii J. Math. 32 175-179