Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z$\end{document}-Eigenvalue Localization Sets for Even Order Tensors and Their Applications

被引:0
作者
Caili Sang
Zhen Chen
机构
[1] Guizhou Normal University,School of Mathematical Sciences
[2] Guizhou Minzu University,College of Data Science and Information Engineering
关键词
Nonnegative tensors; -eigenvalues; -spectral radius; Localization sets; Positive definiteness; 15A18; 15A42; 15A69;
D O I
10.1007/s10440-019-00300-1
中图分类号
学科分类号
摘要
Firstly, a new Geršgorin-type Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z$\end{document}-eigenvalue localization set with parameters for even order tensors is presented. As an application, some sufficient conditions for the positive (semi-)definiteness of even order real symmetric tensors are obtained. Secondly, by selecting appropriate parameters an optimal set is obtained and proved to be tighter than some existing results. Thirdly, as another application, new upper bounds for the Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z$\end{document}-spectral radius of even order weakly symmetric nonnegative tensors are obtained. Finally, numerical examples are given to verify the theoretical results.
引用
收藏
页码:323 / 339
页数:16
相关论文
共 81 条
[1]  
Qi L.(2005)Eigenvalues of a real supersymmetric tensor J. Symb. Comput. 4 1302-1324
[2]  
Bose N.K.(1974)Algorithm for stability test of multidimensional filters IEEE Trans. Acoust. Speech Signal Process. ASSP. 22 307-314
[3]  
Kamat P.S.(1974)Tellegons theorem and multivariate realizability theory Int. J. Electron. 36 417-425
[4]  
Bose N.K.(1975)Output feedback stabilization and related problems-solutions via decision methods IEEE Trans. Autom. Control AC20 53-66
[5]  
Newcomb R.W.(2019)Preconditioned tensor splitting iterations method for solving multi-linear systems Appl. Math. Lett. 96 89-94
[6]  
Anderson B.D.O.(2016)An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors Linear Multilinear Algebra 64 587-601
[7]  
Bose N.K.(2014)New eigenvalue inclusion sets for tensors Numer. Linear Algebra Appl. 21 39-50
[8]  
Jury E.I.(2015)A new eigenvalue inclusion set for tensors and its applications Linear Algebra Appl. 481 36-53
[9]  
Cui L.B.(2016)A new Brauer-type eigenvalue localization set for tensors Linear Multilinear Algebra 64 727-736
[10]  
Li M.H.(2016)An Linear Algebra Appl. 493 469-483