Existence results for fractional hybrid differential systems in Banach algebras

被引:0
作者
Tahereh Bashiri
Seiyed Mansour Vaezpour
Choonkil Park
机构
[1] Amirkabir University of Technology,Department of Mathematics and Computer Science
[2] Hanyang University,Research Institute for Natural Sciences
来源
Advances in Difference Equations | / 2016卷
关键词
hybrid initial value problem; Banach algebras; coupled fixed point theorem; Riemann-Liouville fractional derivative; 34A38; 32A65; 47H10; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we investigate the existence of solutions for the following system of fractional hybrid differential equations (FHDEs): {Dp[θ(t)−w(t,θ(t))u(t,θ(t))]=v(t,ϑ(t)),t∈J,Dp[ϑ(t)−w(t,ϑ(t))u(t,ϑ(t))]=v(t,θ(t)),t∈J,0<p<1,θ(0)=0,ϑ(0)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} D^{p} [\frac{\theta(t)-w(t,\theta(t))}{u(t,\theta(t))}] = v(t,\vartheta (t)) ,\quad t \in J,\\ D^{p} [\frac{\vartheta(t)-w(t,\vartheta(t))}{u(t,\vartheta(t))}] = v(t,\theta(t)) ,\quad t \in J, 0 < p < 1,\\ \theta(0) = 0, \quad\quad \vartheta(0) = 0, \end{cases} $$\end{document} where Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{r}$\end{document} denotes the Riemann-Liouville fractional derivative of order r, J=[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J=[0,1]$\end{document}, and the functions u:J×R→R∖{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u:J\times \mathbb{R}\rightarrow\mathbb{R}\setminus\{0\}$\end{document}, w:J×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w:J\times \mathbb{R}\rightarrow\mathbb{R}$\end{document}, w(0,0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(0,0)=0$\end{document} and v:J×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v:J\times\mathbb{R} \rightarrow\mathbb{R}$\end{document} satisfy certain conditions.
引用
收藏
相关论文
共 55 条
[21]  
Ford NJ(2015)Theory of fractional hybrid differential equations Bound. Value Probl. 2015 87-95
[22]  
El-Sayed AMA(2004)Existence results for hybrid fractional integro-differential equations Appl. Math. Comput. 150 56-64
[23]  
Ibrahim AG(2008)The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations Appl. Math. Comput. 200 269-279
[24]  
Gafiychuk V(2005)Numerical solutions of coupled Burgers equations with time and space fractional derivatives J. Math. Anal. Appl. 302 64-69
[25]  
Datsun B(2006)Positive solutions of a system of non-autonomous fractional differential equations Mech. Res. Commun. 33 1095-1104
[26]  
Meleshko V(2009)Finite time stability analysis of Appl. Math. Lett. 22 426-438
[27]  
He JH(2009) fractional control of robotic time-delay systems Chaos Solitons Fractals 41 575-585
[28]  
Jumarie G(2014)Boundary value problem for a coupled system of nonlinear fractional differential equations Sci. World J. 2014 undefined-undefined
[29]  
Qiu T(1996)Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations J. Korean Math. Soc. 33 undefined-undefined
[30]  
Bai ZH(undefined)Existence results for a system of coupled hybrid fractional differential equations undefined undefined undefined-undefined