Existence results for fractional hybrid differential systems in Banach algebras

被引:0
作者
Tahereh Bashiri
Seiyed Mansour Vaezpour
Choonkil Park
机构
[1] Amirkabir University of Technology,Department of Mathematics and Computer Science
[2] Hanyang University,Research Institute for Natural Sciences
来源
Advances in Difference Equations | / 2016卷
关键词
hybrid initial value problem; Banach algebras; coupled fixed point theorem; Riemann-Liouville fractional derivative; 34A38; 32A65; 47H10; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we investigate the existence of solutions for the following system of fractional hybrid differential equations (FHDEs): {Dp[θ(t)−w(t,θ(t))u(t,θ(t))]=v(t,ϑ(t)),t∈J,Dp[ϑ(t)−w(t,ϑ(t))u(t,ϑ(t))]=v(t,θ(t)),t∈J,0<p<1,θ(0)=0,ϑ(0)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} D^{p} [\frac{\theta(t)-w(t,\theta(t))}{u(t,\theta(t))}] = v(t,\vartheta (t)) ,\quad t \in J,\\ D^{p} [\frac{\vartheta(t)-w(t,\vartheta(t))}{u(t,\vartheta(t))}] = v(t,\theta(t)) ,\quad t \in J, 0 < p < 1,\\ \theta(0) = 0, \quad\quad \vartheta(0) = 0, \end{cases} $$\end{document} where Dr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{r}$\end{document} denotes the Riemann-Liouville fractional derivative of order r, J=[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$J=[0,1]$\end{document}, and the functions u:J×R→R∖{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u:J\times \mathbb{R}\rightarrow\mathbb{R}\setminus\{0\}$\end{document}, w:J×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w:J\times \mathbb{R}\rightarrow\mathbb{R}$\end{document}, w(0,0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w(0,0)=0$\end{document} and v:J×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v:J\times\mathbb{R} \rightarrow\mathbb{R}$\end{document} satisfy certain conditions.
引用
收藏
相关论文
共 55 条
[1]  
Dhage BC(2004)A fixed point theorem in Banach algebras involving three operators with applications Kyungpook Math. J. 44 145-155
[2]  
Dhage BC(2010)Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations Differ. Equ. Appl. 2 465-486
[3]  
Dhage BC(2009)Nonlinear quadratic first order functional integro-differential equations with periodic boundary conditions Dyn. Syst. Appl. 18 303-322
[4]  
Dhage BC(2005)First order integro-differential equations in Banach algebras involving Caratheodory and discontinuous nonlinearities Electron. J. Qual. Theory Differ. Equ. 2005 259-267
[5]  
Karande BD(2000)A fixed point theorem in Banach algebras with applications to functional integral equations Funct. Differ. Equ. 7 89-99
[6]  
Dhage BC(2005)A functional differential equation in Banach algebras Math. Inequal. Appl. 8 146-152
[7]  
O’Regan BD(1994)On Math. Stud. 63 414-424
[8]  
Dhage BC(2010)-condensing mappings in Banach algebras Nonlinear Anal. Hybrid Syst. 4 563-575
[9]  
Salunkhe SN(2004)Basic results on hybrid differential equations Nonlinear Funct. Anal. Appl. 8 93-102
[10]  
Agarwal RP(1999)A nonlinear alternative in Banach algebras with applications to functional differential equations Panam. Math. J. 9 529-539